
SOLVING POWER AND OPTIMAL 
POWER FLOW PROBLEMS IN THE 
PRESENCE OF UNCERTAINTY BY 

AFFINE ARITHMETIC 

Alfredo Vaccaro 

RTSI 2015 - September 16-18, 2015, Torino, Italy 



RESEARCH MOTIVATIONS 

• Power Flow (PF) and Optimal Power Flow 
(OPF) are the mathematical backbone of 
many power engineering applications: 

State estimation. 
Network optimization. 
Unit commitment.  
Voltage control. 
Generation dispatch. 
Market studies. 



RESEARCH MOTIVATIONS 

• Solving PF and OPF problems request in 
considering system uncertainties, which are 
mainly related to: 

Variable nature of generation dispatch.  
Increasing number of smaller geographically 
dispersed generators. 
Difficulties arising for predicting and modeling 
market operator behavior.  
High penetration of generation units powered by 
renewable energy sources. 



RESEARCH MOTIVATIONS 

• Reliable solutions are required to provide 
insight into the level of confidence of PF/OPF 
solutions by: 

Estimating the data tolerance (i.e. uncertainty 
characterization).  
Computing the solution tolerance (i.e. uncertainty 
propagation assessment).  
Performing sensitivity analysis of large parameters 
variations. 



LITERATURE REVIEW 
 

• Sampling-based methods: 
Require several model runs that sample various 
combinations of input values. 
Shortcomings: 

• Need high computational resources. 
• Some sampling techniques reduce the number of model runs 

at the cost of accepting some risk. 



LITERATURE REVIEW 
 

• Analytical methods: 
Computationally more effective, but require some 
mathematical assumptions in order to: 

• Simplify the problem. 
• Obtain an effective characterization of the output random 

variables. 

Shortcomings: 
• Assumes statistical independence of the input data. 
• Need to identify probability distributions for some input data, 

which is not always possible in PF and OPF. 

 
 



LITERATURE REVIEW 
 
• Approximate methods: 

Approximate the statistical proprieties of the 
output random variables. 
These overcome some of the main limitations of 
sampling-based and analytical methods. 
Shortcomings: 

• Do not provide acceptable results in the presence of a large 
number of input random variables.  

• Selection of the number of estimated points is still an open 
problem. 
 

 



LITERATURE REVIEW 
 

• Non-Probabilistic paradigms: 
Can be adopted when: 

• Uncertainty originates from imprecise human knowledge 
about the system. 

• Only imprecise estimates of values and relations between 
variables are available. 

The most advanced models are based on: 
• Theory of possibility. 
• Theory of evidence. 
• Theory of self-validated computing. 

 



LITERATURE REVIEW 
 

• Self-validated computing: 
Keeps track of the accuracy of the computed 
quantities without requiring information about the 
type of uncertainty. 
The simplest and most popular of these models 
is Interval Mathematic (IM). 



LITERATURE REVIEW 
 

• Interval Mathematic: 
Each quantity is represented by an interval of 
floating point numbers without a probability 
structure. 
Such intervals are processed so that each 
computed interval is guaranteed to contain the 
unknown value of the quantity it represents. 
Shortcomings: 

• Over-estimation of the true range of complex functions 
(dependency problem/wrapping effect). 

• It can lead to an unwanted expansion of the resulting intervals 
(error explosion problem). 
 

 



ELEMENTS OF IA 



EXAMPLE OF THE “WRAPPING” 
EFFECT  



EXAMPLE OF THE “WRAPPING” EFFECT 
(HARMONIC OSCILLATOR)  

IA evolution of the external surface of the region of uncertainty for a 2-nd 
order oscillatory system (“wrapping” effect) 



EXAMPLE OF THE DEPENDENCY 
PROBLEM 



LITERATURE REVIEW 
 • Aff ine Arithmetic (AA): 

It is an enhanced model for self validated 
numerical analysis.  
The quantit ies are represented as aff ine 
combinations of certain primit ive variables, 
that stand for: 

• Sources of  uncer ta in ty in  the data.  
• Approximat ions made dur ing the computat ion .  

Unlike IM, it keeps track of correlations 
between computed and input quantit ies, 
hence, there is no dependency problems and 
reduce wrapping effects. 
We have led its application to PF and OPF. 



LITERATURE REVIEW 
 
• Although several papers demonstrated the 

important role played by AA in power systems 
analysis, several open problems remain unsolved: 

Further explore the application of AA-based techniques to 
uncertain OPF analysis. 
Better methodologies are needed for selecting the noise 
symbols of the affine forms.  
More efficient techniques needed to reduce 
overestimation errors. 



TUTORIAL OBJECTIVES  

1. Demonstrate with several realistic test systems 
that the use IA in PF and OPF analysis leads to 
over-pessimistic estimation of the solution hull, and 
analyze the employment of AA to represent the 
uncertainties of the power systems state variables. 

2. Present and thoroughly test solution methodologies 
based on AA for PF and OPF studies with data 
uncertainties. 

3. Conceptualize a unified AA-based computational 
paradigm aimed at solving both PF and OPF 
problems in the presence of data uncertainties.  
 
 
 



RESEARCH OBJECTIVES 

4. Design more effective computing paradigms to 
reduce computational requirements by knowledge 
discovery from historical operating data-sets, and 
use this approach to better identify the noise 
symbols of the affine forms describing the 
uncertain  parameters in the proposed AA-based 
PF and OPF analyses. 



• In AA a partially unknown quantity  is 
represented by an affine form which is a first 
degree polynomial:                  
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BACKGROUND 
 

• Affine operations: 



BACKGROUND 
• Non-affine operations:  

 
 
 

The problem can be lead to the identification of an 
affine function:  

 
that approximates the function reasonably well over 
its domain, with an extra term  that represents the 
error introduced by this approximation:  
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BACKGROUND 



AA-BASED PF 

• Each power system state variable is expressed by a 
central value and a set of partial deviations. 

• These deviations are associated with noise symbols 
that describe the effect of the various uncertainties 
affecting the system state variables, such as P and Q 
variations. 

 



• The affine forms representing the power systems 
state variables are: 

 
 
 
• The central values of the affine forms are calculated 

by solving a conventional PF problem for a 
“nominal operating point” defined by: 
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AA-BASED PF 



AA-BASED PF 

• A first estimation of the partial deviations of the affine 
forms are calculated by sensitivity analysis. 

• To guarantee the inclusion of the solution domain each 
partial deviation is multiplied by an amplification 
coefficient. 



AA-BASED PF  

• Starting from this initial affine solution, a “domain 
contraction” method for narrowing its bounds is 
used. 



AA-BASED PF 



AA-BASED PF 



AA-BASED PF 



AA-BASED PF 

The PF solution can then be obtained by 
contracting the vector X so that: 



AA_BASED PF 



RANGE ARITHMETIC “UNCERTAIN” 
OPF 
• An “uncertain” OPF can be expressed as a class 

of nonlinear interval optimization problems as 
follows: 
 
 
 
 

• Range Analysis reduces the search for the 
extreme of an interval function to the search for 
the extrema of its lower and upper boundary 
functions  
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RANGE ARITHMETIC “UNCERTAIN” 
OPF 

• Therefore, the “uncertain” OPF solution can be 
restated as the solution of the following two NLP 
problems: 
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RANGE ARITHMETIC “UNCERTAIN” 
OPF 
Thus, to find the OPF solution interval the 
following solution algorithm is adopted: 
1. Compute an outer estimation of the uncertain 

OPF problem solution (i.e. by using a 
sensitivity-based approach) 
 

2. Solve the lower boundary problem using any 
appropriate solver for determinate nonlinear 
programming problems 



RANGE ARITHMETIC “UNCERTAIN” 
OPF 
3. Solve the upper boundary problem using 

the same solver as in Step 1, obtaining a 
solution 

4. Compute the solution set as: 
 

where 



• The main idea was to conceptualize a theoretical 
framework aimed at effectively solving 
constrained optimizations problems based on an 
unified AA-based formalism:  

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



DEFINITION OF AA OPERATORS 



DEFINITION OF AA OPERATORS 

There is no way to satisfy this constraint, since the square 
function is a non-affine operation, which introduces a new 
and distinct noise symbol ε2 as follows: 



DEFINITION OF AA OPERATORS 



DEFINITION OF AA OPERATORS 



DEFINITION OF AA OPERATORS 



• Starting from the definition of these novel 
operators, it has been shown that the overall 
problem can be recasted as the following dual 
deterministic problem: 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



• To solve this problem, a two stage solution 
algorithm has been proposed: 

In the first stage, or “nominal state”, it is assumed that 
no uncertainty affect the system, and hence the 
corresponding solution can be computed by solving 
the following deterministic optimization problem: 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



In the second stage, or “perturbed state”, the effect of 
data uncertainty is considered, computing the partial 
deviations of the unknown state vector by solving the 
following deterministic optimization problem: 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



“Nominal state” 

“Perturbed state” 

Solution 



• Compared to the previous proposed AA-based PF and 
range-arithmetic based OPF, this computing paradigm is 
expected to improve the solution accuracy. 

• Anyway, it resulted in higher computational costs, mainly 
due to the large number of control variables required to 
solve the “perturbed state" problem.  

• This could pose some computational difficulties for large 
scale power system applications.  

• To address this problem, PCA-based paradigms for 
knowledge discovery from historical operation data-sets 
has been proposed. 

A UNIFIED PARADIGM FOR PF AND OPF 
ANALYSIS 



KNOWLEDGE DISCOVERY FROM 
POWER SYSTEMS OPERATION DATA 
• PCA-based knowledge discovery paradigms:  

Extract actionable information to determine potential 
patterns and complex features potentially describing 
regularities in the PF and OPF results. 
Simplify the computational burden of the proposed 
optimization frameworks, thus reducing the 
complexity of the AA-based PF and OPF. 
Better identify the noise symbols of the affine forms 
by exploring the connections between the principal 
components and the primitive variables of the affine 
forms. 



PCA-BASED PF ANALYSIS 

• Knowledge extraction from power flow data 
relies on the availability of observations of 
statistically correlated variables which is 
typically referred to as a knowledge base as 
follows: 
 
 

• The knowledge extraction problem consists then 
in discovering the relationships among these 
variables, and in reducing the amount of data 
needed to define these relationships.  
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PCA-BASED PF ANALYSIS 

• This can be accomplished by identifying a 
suitable domain transformation such that the 
elements of the knowledge base can be 
accurately represented by an inverse model of 
the form:  
 
 

• PCA aims at solving the aforementioned 
transformation by approximating the state vector 
observations by a linear combination of a proper 
number of orthogonal and uncorrelated principal 
components with decreasing variance 
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PCA-BASED PF ANALYSIS 

 
 
 

• Where the principal component vector can 
be can be computed as follows: 
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PCA-BASED PF ANALYSIS 

• Each principal component carries different and 
uncorrelated information to other components, 
and only a limited number of them are 
necessary to accurately approximate the 
historical observations for highly correlated 
datasets  

• Thanks to this feature, the  historical power flow 
data can be approximated by storing and 
processing a limited number of variables  

• This represents the data compression capability 
of the PCA based knowledge extraction process 
 



PCA-BASED PF ANALYSIS 

• A further, and certainly more attractive, 
mathematical result:  
 
 

• Which allows to solve the power flow 
problem, by identifying the unknown principal 
components  such that: 
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PCA-BASED PF ANALYSIS 

• Benefits of this new formulation: 
Drastic reduction of the problem cardinality 
Better convergence proprieties of the solution 
algorithm 
Lower complexity and computational burdens.  

• These claims may be justified by observing that 
the asymptotic complexity of the solution 
algorithm is O(nx npc

2)  
• As a consequence, the complexity reduction 

could be noticeable, especially in the presence 
of statistically dependent load/generation 
patterns  



PCA-BASED OPF ANALYSIS 

• The main idea is to extrapolate a linear 
mapping between the variables of the OPF 
problem and the principal components as 
follows: 

( ) T>Kz+(K)s=z(K) med ∀Ω ~ 



PCA-BASED OPF ANALYSIS 

• This linear extrapolation allows to solve the 
OPF problem           , as follows: T>K∀



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
• The main idea is to exploit the capacity of 

PCA in describing the evolution of 
statistically correlated variables by a linear 
combination of a limited number of “primitive" 
variables.  

• To discover the potential patterns among 
these data, the following set of historical 
observations should be analyzed: 



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
• The application of PCA to this data set 

allows to represent the injected active and 
reactive powers as follows: 



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
• Hence, the number of noise symbols 

describing the injected power uncertainties 
can be set to      , and the corresponding 
affine forms can be defined as follows: 
 
 
 

• where the noise symbols represent the 
uncertainty affecting the principal 
components.  

PCn



PCA-BASED IDENTIFICATION OF 
THE NOISE SYMBOLS 
• The unknown parameters of the affine forms defined 

can be identified by solving the following system of 
linear interval equations: 
 
 
 

• Which yield to the following relations: 



SIMULATION STUDIES 

• Detailed simulation studies were obtained 
for the several IEEE Node Test Feeders and 
for a large scale power system.  

• The PF and OPF solution tolerances 
obtained by the proposed AA-based 
methodologies have been compared to those 
calculated by a Monte Carlo simulation. 

• The input data uncertainties assumed to 
have a tolerance of ±20% on loads demand 
and power generated. 



SIMULATION STUDIES – PF ANALYSIS 



SIMULATION STUDIES – PF ANALYSIS 



SIMULATION STUDIES – PF ANALYSIS 



SIMULATION STUDIES – OPF ANALYSIS 



SIMULATION STUDIES – PF ANALYSIS 
UNIFIED PARADIGM 



SIMULATION STUDIES – PF ANALYSIS 
UNIFIED PARADIGM 



SIMULATION STUDIES – PF ANALYSIS 
UNIFIED PARADIGM 



SIMULATION STUDIES – OPF 
ANALYSIS UNIFIED PARADIGM 



SIMULATION STUDIES – PCA-BASED 
PF ANALYSIS 



SIMULATION STUDIES – PCA-BASED 
PF ANALYSIS 



SIMULATION STUDIES – PCA-BASED 
PF ANALYSIS 



SIMULATION STUDIES – PCA-BASED 
PF ANALYSIS 



SIMULATION STUDIES – PCA-BASED 
OPF ANALYSIS 



SIMULATION STUDIES – PCA-BASED 
IDENTIFICATION OF THE AFFINE FORMS 



• This Tutorial analyzed the use of AA-based 
computing paradigms for solving uncertain PF and 
OPF problems 

• A methodology for AA-based PF analysis that 
allows to better handle uncertainty compared to 
the traditional and widely used IA approaches was 
described 

• A domain contraction technique based on range 
arithmetic was then analyzed for uncertain OPF 
analysis 

CONCLUSIVE REMARKS 



• To reduce the approximation errors of uncertain 
PF and OPF analyses a novel AA-based computing 
paradigm was defined 

• A PCA-based paradigm for knowledge discovery 
from historical operation data-sets was proposed 
to lower the cardinality of PF and OPF problems, 
and to identify the optimal affine forms 

CONCLUSIVE REMARKS 



• On the basis of the obtained results, it could be 
argued that a power engineer aiming at using AA-
based techniques is confronted with an 
accuracy/complexity trade-off.  

• AA techniques based on domain contraction can 
be used to obtain a rough qualitative insight of the 
solution in a very short time 

• Solution methods based on the definition of 
formal AA operators can be used to obtain more 
accurate solution enclosures at the cost of higher 
simulation times 

CONCLUSIVE REMARKS 



• In both cases, the use of PCA can contribute to 
sensibly reduce the problem cardinality, and to 
better identify the affine forms describing the data 
uncertainty. 

CONCLUSIVE REMARKS 
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