1st International Forum on Research and Technologies for Society and Industry

lutorial 4

Leveraging a better tomorrow

Torino, Italy, 16-18 Sep. 2015

Organized by the IEEE Italy Section and Politecnico di Torino, Italy

Low-Noise Impedance Sensing: Circuits and Micro-Technological Applications

Marco Carminati

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria marco1.carminati@polimi.it

Motivation: Impedance is Everywhere

Thanks to its versatility, impedance is traditionally leveraged in several industrial sensing applications

Focusing on the example of contactless capacitive sensing, let's see the scaling trend from macro to micro size applications

Macro: Contactless Liquid Sensing

Electrodes are protected from the liquid, the capacitance increases linearly with the tank level

Macro: Contactless Capacitance Tomography

Impurities inside pipes (or droplets in microfluidic channels) can be detected with several electrodes properly arranged

Mini: Capacitive Touchscreen

Milli: Capacitive Fingerprint Scanner

Micro: Inertial MEMS

Capacitive sensing of displacement of micro proof masses

8 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Tutorial Outline

- Definitions and spectra diagrams
- Microscale impedance measurement
- Introduction to electronic noise
- Low-noise current sensing
- Transimpedanace amplifier and lock-in
- Role of the input (stray) capacitance: cables and substrates
- Advanced circuit topologies
- Example of applications:
 - Biological cell counting
 - Particulate matter detection
 - Non-invasive light power metering

Impedance is a complex quantity changing with frequency f:

 $Re{Z}$: energy dissipation, $Im{Z}$: energy storage

Impedance can be measured:

Plotting Impedance Spectra

Two alternative ways to present impedance spectra:

Equivalent!

Microscale Impedance Sensing

Microfabriaction allows the realization of **microelectrodes** to interface with microscale samples (such as biological cells).

If Z increases, given the same excitation voltage (limited by biology or *dielectric breakdown*), the current flowing through the system **decreases:**

It becomes harder to measure a smaller current

The noise of the instrument (current reader) becomes significant!

The noise is a property of the detection instrument but might depend on the sample and on the connections.

What is Noise?

Any electrical signal is affected by disturbances and **noise**: i(t) = signal(t) + d(t) + n(t)

Disturbances are signals of external origin that can be filtered.

Noise is a random fluctuation of the electrical variables due to the physical behaviour of *internal* components of the circuit.

Described by standard deviation σ

$$SNR = rac{Signal Amplitude}{Noise Amplitude} = rac{Signal}{\sigma_{rms}}$$

Noise Power Spectrum

Impedance Measurement Techniques

 Sinusoidal stimulation: 	(Measurand)
 Wheatstone bridge 	(voltage)
 Ratiometric 	(voltage)
Resonant	(frequency)
 Current sensing + lock-in 	(current)

most versatile approach, better rejection of parasitics

Non sinusoidal stimulation:

- Multi-sine or pseudo noise FFT-based
- Time-domain fitting of step response
- Capacitance charge and discharge

(current) (current/voltage) (current/time)

Impedance Detector Architecture

Transimpedance Amplifier: Noise Analysis

Getting Rid of Silicon When Not Needed

19 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Transimpedance Amplifier: Limits

1 - Compensated TIA

Ciofi, IEEE Instr.& Meas. 55 2006, M. Carminati, Analog IC Sig. Process. 2013

2 - Integrator-Differentiator Cascade

2.1 - Discrete Time: Reset Switch

Switch periodically closed to discharge the capacitor:

Limits the maximum measurement time

For example: $I_{IN-DC} = 1$ nA, $C_F = 1$ pF $\rightarrow (5V)$ $T_{MAX} = 5$ ms

M. Bennati, M. Tartagni, A Sup-pA Delta-Sigma Current Amplifier for Single Molecule Nanosensors", IEEE ISSCC 2009

2.2 - Continuous Time: Active Reset

To achieve continuous-time operation: additional feedback branch H(s) with high gain at low frequency:

G. Ferrari, RSI 78 2007 & IEEE JSSC 2009, M. Carminati, RSI 80 2009.

24 M Carminati - Tutorial 3 - Low-noise Impedance sensing

V Transfer Functions

Two separate paths and gains:

- DC and low frequency
- High frequency

 $V_{OUT-DC} = -R_{DC}I_{IN}$ $V_{OUT-AC} = \frac{C_D}{C_F}R_{FD}I_{IN}$

$$f_m = \frac{1}{2\pi C_F R_{DC} \gamma}$$

For wideband impedance spectroscopy, large R_{DC} is required

Mitigation of Source Noise: Differential Sensing

Biological Cells (*resistance*) Airborne Dust (*capacitance*) Silicon Photonics (*resistance in AC*)

Applications to Cell Biology

Small signal equivalent of a passive cell: the single shell model

At low frequency (<1MHz), the cell can be treated as an insulating sphere (resistivity contrast)

The presence of cells can be sensed by impedance as a perturbation of the electrical field between two electrodes

"Static" "Dynamic"

Electric Cell-substrate Impedance Sensing

ECIS Technique invented by Giaever and Keese

30 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Comparison of Sensing Geometries

Comparison with HeLa Cells

32 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Impedance Flow Cytometry

- A novel approach, pioneered by Morgan and Renaud (~2000)
- Tracking impedance between close electrodes over time
- High-throughput single-cell analysis (beyond sizing)

T. Sun & H. Morgan, *Microfluid. Nanofluid.* 8 2010

K. Cheung et al., Cytometry 77A 2010

Electrodes Configurations

Design of Sensing Electrodes

M Carminati - Tutorial 3 - Low-noise Impedance sensing

Optimal Electrode Design

- The gap sets the vertical extension of the sensing volume
- An optimal gap exists for a given cell diameter
- Sensitivity scales with cell volume and vertical height

Operating Frequency

Enhanced Device Architecture

- Integrated into the device with no size increase
- Third electrode available for differential sensing (drift)

M Carminati - Tutorial 3 - Low-noise Impedance sensing

Miniaturized Impedance Detector

- On-board signal generator
- ASIC 1MHz CMOS lock-in and 20bit ΣΔ converter
- Real-time FPGA peak detection algorithm
- Digital USB data acquisition

Credit Card Sized Implementation

Ultra compact system

3.3V USB Power Supply

2 channels:

- 2 outlets
- Complex impedance

M Carminati - Tutorial 3 - Low-noise Impedance sensing

Performance Assessment

- Impedance tracking comparable with state-of-art instrument
- Error-free real-time FPGA peak counting at 2000 events/s

M Carminati - Tutorial 3 - Low-noise Impedance sensing

System Validation with Beads

- $10\mu m$ polystyrene beads in PBS
- 50 beads/s (1µl/min)
- $V_{AC} = 50 \text{mV}, f_0 = 100 \text{kHz}, 5 \text{kSa/s}$

- Sacc. Cerevisiae (5μm)
- 10⁵ cells/ml in 0.35S/m medium (with BSA)

POLITECNICO DI MILANO

M Carminati - Tutorial 3 - Low-noise Impedance sensing

- Sacc. Cerevisiae (5µm)
- 10⁵ cells/ml in 0.35S/m medium (with BSA)
- $V_{AC} = 650 \text{mV}, f_0 = 100 \text{kHz}, 2 \text{kSa/s}$ 0.2 0.0

M Carminati - Tutorial 3 - Low-noise Impedance sensing

M Carminati - Tutorial 3 - Low-noise Impedance sensing

A Novel Technique: Electrical Detection

Real-time capacitive detection of single PM particles

$$\frac{\Delta C}{C} = \frac{Volume_{particle}}{Volume_{total}} \cdot \Delta \varepsilon$$
$$\Delta C = \frac{4}{3} \cdot \pi \cdot \frac{R^3}{h^2} \cdot \Delta \varepsilon \cdot \varepsilon_0$$
$$R = \sqrt[3]{\frac{\Delta C \cdot h^2}{\frac{4}{3} \cdot \pi \cdot \Delta \varepsilon \cdot \varepsilon_0}}$$

M. Carminati, Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors, *Sensors Actuators A* **219**, 2014.

46 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Choice of the Sensing Configuration

Key design choices:

- Air vs liquid
- Electrode configuration:

M. Carminati, Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors, *Sensors Actuators A* **219**, 2014.

Preliminary FEM Simulations

Also in the coplanar geometry, ΔC has a volume dependence

Electrode Geometry Optimization

Fine tuning of the electrode parameters with FEM simulations

Gap: min. Height: min. Length: 30μm

M. Carminati, Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors, *Sensors Actuators A* **219**, 2014.

49 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Low-Noise Detection Electronics

- Low-noise custom front-end (integrator)
- Differential sensing configuration to reduce generator noise
- 1.1aF resolution with 1sec response time (5aF with 1ms)

Static Characterization: PM₁₀ Detection

Validation with calibrated polystyrene 10µm beads

∆C consistent with simulations

POLITECNICO DI MILANO

51 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Full Detection System

PM₁₀: Talc Detection

Real-time deposition tracking ($\Delta t = 10$ ms) $\epsilon_r = 2.2$

Single-Chip Detector: Towards Smartphones

Cap. Resolution: Spanning Orders of Magnitude

55 M Carminati - Tutorial 3 - Low-noise Impedance sensing

Integrated Photonics: Context and Motivation

Large-scale integration of several components is limited by:

- lack of a consolidated/standard fabrication approach
- lack of local feedback to counterbalance drifts, variations
- limited integration with CMOS circuits

56 M Carminati - Tutorial 3 - Low-noise Impedance sensing

A Novel Transparent Light Monitoring Technique

At $\lambda = 1550$ nm the Si waveguide is **transparent** but

defects at the Si/SiO₂
 interface produce
 surface states

Photogenerated carriers

F. Morichetti et al., IEEE J. Sel. Top. Quant. Electron., 20 (2014).

A Novel Transparent Light Monitoring Technique

Detection Architecture

Low-noise impedance tracking platform

Non-Invasivity Enables Multipoint Monitoring

No extra light absorption

Multisite monitoring in complex circuits

Multichannel ASIC is required

ASIC Design

- Integrator front-end ($C_F = 1pF$)
- DC handling network with sub-threshlod transistors
- 8-channel low-parasitics MUX
- 2 square-wave multipliers
- 32 channels (4 parallel acquisition chains)
- 3.3V, 8mA current consumption, AMS 0.35µm CMOS

Performances of the Integrated Setup

ASIC Characterization

565nV rms

Admittance spectroscopy for a wide range of optical power levels

Monitor response curve

 $\Delta G \propto P^{0.6}$

Min power: -30dBm, 40dB dynamic range

Looking Inside a Ring Resonator

Closing the Loop

S. Grillanda et al., Optica., 1 3 (2014)

POLITECNICO DI MILANO

66 M Carminati - Tutorial 3 - Low-noise Impedance sensing

- Not all the impedance measuring techniques are equivalent in terms of noise and suitability for impedance spectroscopy.
- When measuring impedance at the **microscale**, the signals decrease and **noise** (unavoidable property of the electronic components) becomes relevant.
- The **current sensing** front-end coupled with a **lock-in** demodulator represents the best solution.
- The input capacitance must be **minimized**, paying attention to short coax cables and preferably insulating substrates.
- The transimpedance amplifier allows neutralization of the input stray impedance, but is prone to a noise/bandwidth trade-off, that can be relaxed by means of advanced topologies such as the integrator/differentiator cascade.

- M. Carminati, G. Ferrari, D. Bianchi, M. Sampietro, Impedance spectroscopy for biosensing: circuits and applications, in *Handbook of Biochips* (Editor M. Sawan), Springer *in press.*
- M. Carminati et. al. "Theoretical and Experimental Comparison of Microelectrode Sensing Configurations for Impedimetric Cell Monitoring" pp. 75-82, in Lecture Notes on Impedance Spectroscopy: Vol. 4, CRC Press, 2013.
- M. Crescentini, M. Bennati, M. Carminati, M. Tartagni, "Noise Limits of CMOS Current Interfaces for Biosensors: a Review", IEEE Trans. Biomed. Circuits and Systems, vol. 8, no. 2, pp. 278-292, 2014.
- M. Carminati, G. Ferrari, D. Bianchi, M. Sampietro, "Femtoampere integrated current preamplifier for low noise and wide bandwidth electrochemistry with nanoelectrodes" *Electrochimica Acta*, vol. 112, pp. 950–956, 2013.
- M. Carminati, M. Vergani, G. Ferrari, L. Caranzi, M. Caironi, M. Sampietro "Accuracy and resolution limits in quartz and silicon substrates with microelectrodes for electrochemical biosensors", *Sens. Act. B,* vol. 174, pp. 168-175, 2012.
- M. Carminati, G. Ferrari, F. Guagliardo, M. Sampietro, "ZeptoFarad capacitance detection with a miniaturized CMOS current front-end for nanoscale sensors", Sens. Act. A, vol. 172, pp.117-123, 2011.
- M. Carminati, G. Ferrari and M. Sampietro, "attoFarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems", *Rev. Sci. Instrum.*, vol. 80, no. 12, pp. 124701/1-10, 2009.

Co-workers:

M. Sampietro, G. Ferrari, P. Ciccarella, G. Gervasoni S. Grillanda, F. Morichetti, A. Melloni

Work supported by Fondazione Cariplo Progetto **MINUTE** and by EU under FP7 project «BBOI» Breaking the Barriers of Optical Integration

