Wide Band Gap Materials: Revolution in Automotive Power Electronics

Jean-Benoit Moreau

IEEE forum

Torino Sept 16, 2015

- A global semiconductor leader
- The largest European semiconductor company
- 2014 revenues of **\$7.40B**
- Approximately **43,600** employees worldwide
- Approximately 8,700 people working in R&D
- 11 manufacturing sites
- Listed on New York Stock Exchange, Euronext Paris and Borsa Italiana, Milano

life.augmented

from Active Safety to Autonomous Driving

Innovation:

6

ST Solution for **Infotainment & Telematics**

Driving the Move from Car radio to a Connected Car

for Entry Infotainment

standards

life.auamented

ST Solution for V2X Connected Car

- Unmatched V2X system solution codevelopment combining
 - Autotalks V2X technology lead and
 - ST Automotive and Telematics Expertise with Global Infrastructure and services
- First ISO26262 ASIL-B grade V2X Processor integrating

Wi-Fi

GNSS

- WiFi modem
- Security
- Vehicle network connectivity
- Multi-Core CPU processing
- Leveraging best-in-class Multi-GNSS positioning of Teseo Family Receivers

From Telematics

IHS 2014 report forecasts worldwide V2X communication sales will amount to nearly 700,000 units in 2017, rising to 55 million in 2025

To Connected Car رَرَّ o

http://www.st.com/web/en/press/t3625

Connected cars need security

life.augmented

CO2 reduction mandate

In EV/HEV car, dealing with.....

9

- ✤ New voltage classes never seen before in a car, up to 1,200 Volts !!!
- Power of 100's of Kilowatts
- High temperature environment and huge thermal power cycling stresses
- Mechatronics integration complexity requiring new cooling techniques
- New functional safety boundaries, not really covered by previous mission profiles
- ✤ and all of this, keeping it within an affordable cost.....

THIS IS CALLED REVOLUTION !

RELIABILITY

Wide Band Gap Materials Breaking the paradigm

	Si	GaN	4H-SiC
E _g (eV) – Band gap	1.1	3.4	3.3
V_{s} (cm/s) – Electron saturation velocity	1x10 ⁷	2.2x10 ⁷	2x10 ⁷
$\boldsymbol{\epsilon}_{r}$ – dielectric constant	11.8	10	9.7
E_{c} (V/cm) – Critical electric field	3x10 ⁵	2.2x10 ⁶	3x10 ⁶
k (W/cm K) thermal conductivity	1.5	1.7	5

Higher switching frequency Lower switching losses

ST's long History on the SiC market

12

SiC

And now Power MOSFET.....

4	0
	2

1200V SiC MOSFET				
	SCT20N120	SCT30N120	SCT50N120	
In	20 A	45 A	65 A	
Ron _(tvp)	< 240 mΩ	< 90 mΩ	< 70 m Ω	
Qg _(typ)	< 45nC	< 105nC	< 130nC	
Ron _(typ) Qg _(typ)	< 45nC	< 105nC	< 130nC	

Gate Driving Voltage = 20 V HiP247 Package : Tjmax=200 °C

On-resistance Variation vs. Temperature 14

ST SiC MOSFET specified in Rdson at 200°C with only 25% increase vs 25°C

Unmatched switching losses vs IGBT

ST SiC MOSFET vs. best in class IGBT						
	Chip size (Normalized)	V _{on} typ (V) (25°C, 20A)	V _{on} typ (V) (175°C, 20A)	E _{on} (μJ) (20A, 900V) 25°C / 175°C	E _{off} (μJ) (20A, 900V) 25°C / 175°C	E _{off} 25°C / 175°C difference (%)
SCT30N120 (SiC MOSFET)	0.45	2	2.4	725 / 965 [*]	245 / 307	+25%
IGBT (competition)	1.00	1.95	2.35	2140 / 3100	980 / 1850	+90%

* Measured by using the SiC intrinsic body diode

- Switching losses significantly lower
 - Eon 3x lower, Eoff 4x lower
- Moderate dependancy on temperature variations
 - Valid for R_{DS(ON)} and Switching Losses

ST SiC MOSFET vs. best in class IGBT

Full SiC-MOSFET vs Si-IGBT simulation for 60kW inverter

Simulation Results at Vdc = 900V, $200A_{pk}$, $f_{sw} = 20$ kHz

Loss Energy	Si-IGBTs Solution	Full-SiC Solution	SiC vs Si	
Total chip-area	300 mm ²	168 mm ²		
Conduction losses (W)	125	55	← > 2x lower	
Turn-on losses (W)	280	90	← > 3x lower	
Turn-off losses (W)	246	40	← > 6x lower	
Body diode conduction losses (W)	NA	12.3	2x higher, but	
Diode conduction losses (W)	5	NA	no external diode	
Diode's Q _{rr} losses (W)	260	5.3	← 50 x lower	
Total losses (W)	916	203		

Total Power Dissipation about 75% lower by using Full SiC-Solution

Full-SiC Power Module Case-study

Description & Purpose:

Custom Power Module for 3- ϕ inverter to drive an electric turbo 1200V, 300A Liquid cooling (baseplate with fins)

Key Products:

x 72 1200V/80m Ω SiC MOSFET (12 x switch) No freewheeling diode Gate resistors embedded

Main Module Specs

- Full SiC Power Module
- Topology: 3-ph, full-bridge
- Nominal Power = 60kW
- Bus Voltage = 900V
- Current capability = 200A peak

20% smaller vs. previous IGBT based Module

Can be further improve thanks to:

- larger die size (with less die to be put in parallel)
- By integration of Rg into SiC structure

SiC Value Proposition in EV/HEV Main Inverter

>1% efficiency improvement (75% lower loss)

→ Longer battery life

75% cooling system downsize on Inverter side

→ Smaller and Lighter Power Unit

Up to 50% module size reduction

→ Smaller and Lighter Power Unit

A deeper look on Boost converters and on-board chargers

Various Switching Topologies 20

System benefit for HV DC-DC & chargers

SiC enables new 'Efficiency-switching frequency' vs Silicon technology

1200V SiC MOSFET guarantees similar efficiency at 100 kHz compared to a 1200V Si IGBT (+ SiC boost diode) at 25 kHz... And.....

Exercise done on 4kW solution based on SiC technology

Boost Inverter in detail

- Fully integrated and compact solution:
 - Power stage, aux. SMPS, controller, signal processing
- Main ST products:
 - SCT30N120 (1200V / 45A SiC MOSFET)
 - **STPSC6H12B** (1200V / 6A SiC Diode)
 - **TD350ED** (GapDrive also tested with equal results)
 - **L5991D** (current mode PWM controller)
- Optimized for 100kHz switching
- Board available to selected Customers

Performance					
Input Voltage (VDC)	Output Power (W)	Heatsink Temperature (°C)	Total efficiency including AUX (%)	Total efficiency without AUX* (%)	
600	2094	57.5	99.11	99.29	

And.....space/cost saving impact on inductor

Almost 50% less volume *

30% lower Losses on Magnetic *

60% lower Weight *

Cost halved!! *

(*) Study conducted by **F.E.EM** Sas, Italian company which manufactures Electric and Electromagnetic components on a 5kW Boost converter. Report available.

Overall System cost cheaper with SiC

SiC Wafer Size Evolution

ST has Well-established Expertise on SiC Material & Devices

- Industrial maturity
- More competition among wafer suppliers
- 6" wafer
- Epi in house
- New techno generations

Conclusion: Application areas of WBG in cars

Conclusion: Application areas of WBG in cars

Merci Grazzie Thank you!

ST stands for **plife.augmented**

