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ARAMIS & LASAR : the identity card

Large amount of deployed algorithms

(more than 20yrs R&D)

Advanced Reliability Availability & Maintenance for Industries and Services
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Prevented by

Design for Reliability Maintenance
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Normal Degraded Failure

Problem statement

Failures
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(SMART) Reliability Engineering

Modern Reliability Engineering



The Big KID

Modern (smart) Reliability Engineering



Big Knowledge(ID)
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Real world 
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solution
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interpretation



Big (K)Information(D)



Big (KI)Data
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Can the Big KID become SMART for 

Reliability Engineering ?



Prevented by

Design for Reliability Maintenance

Time

Normal Degraded Failure

Problem statement
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…



SMART Reliability Engineering

Big KID opportunities

Reliability analysis for Design for Reliability:

From (binary) failure modeling to degradation-to-failure modeling



Failure modelling (binary) 

ON OFF

Failure

As Good As New Failed

t

X(t)
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0%

System unavailability U(t) = Pr[X (t) <100%]

U(t) = Pr[X (t) =0%]
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Multi-state:

t
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D(t)Demand of system performance

System unavailability U(D,t) = Pr[X (t) < D(t)]

Degradation-to-failure modeling



How to represent and model the item behavior?

OFF

Failure

Degradation 

state 1

Degradation 

state n1

Failure Mode 1
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Degradation 

state 1

Degradation 

state nM

Failure Mode M

…

…
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Degradation-to-failure modeling

Multi-state:

Integrating physics-of-failure knowledge in reliability models 
Multi-State Physic-Based Models



ModelKID
(Knowledge, Information, Data)
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Sufficient failure 

data

Physics knowledge

Expert judgment

Field data

Highly reliable

Statistical models 

of time to failure

Stochastic process 

models

Physics-based 

models

Multi-state

models

Reliability ?

SMART Reliability Engineering

Challenges

Alloy 82/182 dissimilar metal weld of piping in a PWR primary coolant system



Multi-state physics model of crack development 

in Alloy 82/182 dissimilar metal weld

Alloy 82/182 dissimilar metal weld of piping in a PWR primary coolant system

Physical laws

SMART Reliability Engineering

Multi-State Physic-Based Models



SMART Reliability Engineering

Opportunities

Degradation

process

Random

shock process

1) Random shocks

Valve Internal leak

Pump Failure state

3 2 1 0
λ32 λ21 λ10

Pump Initial state

2) Dependences in degradation processes



20SMART Reliability Engineering

Opportunities

3) Maintenance

Preventive maintenance (a)

Corrective maintenance (b)
Degradation

process

a

b

Uncertain parameters in degradation models 

4) Uncertainty

Valve Internal leak

Pump Failure state

3 2 1 0
λ32 λ21 λ10

Pump Initial state



Valve Internal leak

Pump Failure state

3 2 1 0
λ32 λ21 λ10

Pump Initial state

21SMART Reliability Engineering

Challenges

Piecewise-deterministic Markov 

process (PDMP)

Monte Carlo (MC) simulation

Finite-volume integration schemes
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Maintenance Engineering Objectives

• Optimization of the maintenance of production assets:

 Maximize reliability (R)

 Maximize production availability (A)

 Minimize personnel, material, inventory costs

 Maximize efficiency/effectiveness of maintenance interventions (M)

 Trade-off internal/external maintenance efforts (M)

 Fulfill safety/regulatory constraints (S)

 Fulfill budgetary constraints (C)

 … 

In other words…

RAMS(+C)

for

BETTER PERFORMANCES WITH LOWER COSTS



How to achieve the objectives

Integrated maintenance process, supported and informed by knowledge of 

components/systems/process behaviors through 

 high-quality data, real-time information

 effective models and methods to process the information

 effective organizational processes to implement the solutions

KID + Intelligence



SMART Maintenance Engineering 

Big KID opportunities

Maintenance:

Integrating physics knowledge and data:

• Prognostics and Health Management (PHM)



Maintenance Intervention Approaches

Maintenance 
Intervention

Unplanned

Corrective

Replacement or 

repair of failed units

Planned

Scheduled

Perform 

inspections, 

and possibly 

repairs, 

following a 

predefined 

schedule

Condition-
based

Monitor the health 

of the system and 

then decide on 

repair actions 

based on the 

degradation level 

assessed

Predictive

Predict the 

Remaining Useful 

Life (RUL) of the 

system and then 

decide on repair 

actions based on 

the predicted RUL

PHM

Modelling is in support to proper maintenance planning and



Prognostics and Health 

Management (PHM)

1950 1980 2000
Corrective 

Maintenance

Planned Periodic 

Maintenance

Condition Based 

Maintenance (CBM)

2016
Predictive 

Maintenance (PrM)

PHM is fostered by advancements in:

Maintenance

Sensor Algorithm Computation power

Maintenance



PHM for what?

PHM in support to CBM and PrM

28

Equipment
Maintenance 

Decision

Abnormal 

Conditions

Normal

Conditions

Anomaly of Type 1

Anomaly of Type 2

Anomaly of Type 3

Maintenance

No 

Maintenance

Decision

Maker

Remaining Useful

Life (RUL)

Fault

Detection

Fault 

Diagnostics

Fault 

Prognostics

…

Vibration

t

Sensors 

measurements

t

Temperature



 Increase maintainability, availability, safety, operating

performance and productivity

 Reduce downtime, number and severity of failure and

life-time cost

PHM: why? (Industry)



 Improve cash flow, profit stream and utilization of assets

 Guarantee long term business

 Increase market share

PHM: why? (Business)
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PHM: how? (Fault detection) 
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ANOMALOUS OPERATION

MEASUREMENTS ≠ RECONSTRUCTIONS

PHM: how? (Fault detection) 

P. Baraldi, F. Di Maio, L. Pappaglione, E. Zio, R. Seraoui, “Condition Monitoring of Electrical Power Plant Components During Operational 

Transients”, Proceedings of the Institution of Mechanical Engineers, Part O, Journal of Risk and Reliability, 226(6) 568–583, 2012.

Baraldi, P., Canesi, R., Zio, E., Seraoui, R., Chevalier, R. Genetic algorithm-based wrapper approach for grouping condition monitoring signals of 

nuclear power plant components (2011) Integrated Computer-Aided Engineering, 18 (3), pp. 221-234. 



• Signal measurements representative of the fault classes: «c1,c2,…cn, class»

PHM: how? (Fault diagnostics)

CLASSIFIER

Measured Signals Fault Types 

(classes)

BWR feedwater system

(Swedish Forsmark-3)

c1
c2
…
cn

Baraldi, P., Razavi-Far, R., Zio, E., “Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational 

conditions”, (2011) Reliability Engineering and System Safety, 96 (4), pp. 480-488.

F. Di Maio, J. Hu, P. Tse, K. Tsui, E. Zio, M. Pecht, “Ensemble-approaches for clustering health status of oil sand pumps”, Expert Systems with 

Applications, Volume 39, pp. 4847–4859, doi: 10.1016/j.eswa.2011.10.008



Data-

Driven

Model

Based

• Physics-based model of 

the degradation process

• Measurement equation

• Current degradation trajectory

• A threshold of failure

• External/operational conditions 

Degrading component
Similar components

Particle filter

Monte Carlo

Simulation

• Degradation trajectories of similar 

components 

• Life durations of a set of similar 

components

Hidden Semi-Markov

Models

Artificial Neural

Networks

Autoregressive (AR)

models

Similarity-based

methods

Neuro-fuzzy

systems

PHM: how? (Fault prognostics) 

Kalman Filter



Health

Index

tp
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prediction

t
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Rotating 

machinery (e.g. 

pump)

Baraldi, P., Cadini, F., Mangili, F., Zio, E. Model-based and data-driven prognostics under different available information (2013) Probabilistic 

Engineering Mechanics, 32, pp. 66-79. 

E. Zio, F. Di Maio, “A Data-Driven Fuzzy Approach for Predicting the Remaining Useful Life in Dynamic Failure Scenarios of a Nuclear Power Plant”, 

Reliability Engineering and System Safety, RESS, 10.1016/j.ress.2009.08.001, 2009.

F. Di Maio, K.L. Tsui, E. Zio, “Combining Relevance Vector Machines and Exponential Regression for Bearing RUL estimation”, Mechanical Systems 

and Signal Processing, Mechanical Systems and Signal Processing, 31, 405–427, 2012.

PHM: how? (Fault prognostics) 



PHM: performance ?

• Accuracy



• Accuracy

 Fault Detection:

 Low rate of False Alarms

 Low rate of Missing Alarms

False Alarm

Rates

Missing

Alarm

Rates

0.54% 0.98%

Detection

Model

Normal 

Condition

PHM: performance ? (detection)

1x

2x

rx



• Accuracy

 Fault diagnostics:

 Low Misclassification rate

C1

C2

C3

Diagnostic

Model

Signals

o = true

 = diagnostic model

Misclassification rate = 2.58%

PHM: performance ? (diagnostics)



• Accuracy

 Prognostics

PHM: performance ? (prognostics)
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Application: NPP feedwater pumps

• Reactor Coolant Pumps of a PWR NPP

• [

x4

P. Baraldi, R. Canesi, E. Zio, R. Seraoui, R. Chevalier, "Generic algorithm-based wrapper 

approach for grouping condition monitoring signal of  nuclear power plant components“. 

Integrated Computer-Aided Engineering, Vol. 18 (3), pp. 221-234, 2011
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PHM: how? (Fault detection) 



The Auto-Associative Kernel Regression 

(AAKR)

Empirical modeling refers to any kind of (computer) approximated 

modeling based on empirical observations rather than on mathematically 

describable relationships of the system modeled

1. Collect data measurements representative of the system behavior

2. Develop the empirical model using as training set the collected data

measurements

test measurements

reconstruction

measurements

test measurements



Available information

• Historical measurements of 94 stationary signals during 1 year of 

operation

• EDF experts have considered 48 of the 94 measured signals as the 

most important for the component condition monitoring



Signal Grouping

COMPARISON

AUTO-ASSOCIATIVE

MODEL OF PLANT BEHAVIOR IN 

NORMAL CONDITION

MODEL 1

MODEL 2

MODEL m

MEASURED

SIGNALS

…



Challenge: Optimal Grouping

COMPARISON

MODEL 1

MODEL 2

HOW TO 

GROUP 

SIGNALS

?

MEASURED

SIGNALS

MODEL m

…

Requirement: each signal should belong to only 1 group



Approaches to signal grouping

HOW TO SPLIT THE SIGNALS INTO SUBGROUPS?

A-PRIORI CRITERIA

(signals divided on the basis of…)

• physical homogeneity

• location in the power plant

• correlation

• others



BEST A-PRIORI GROUPING: “correlation”

CRITICALITY: how to group the signals which have a low degree of 

correlation with all the others?

Results

WHITE: high correlation (0.7 1]

GREY: medium correlation (0.4 0.7]

BLACK: low correlation [0 0.4]

4
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33

signals

signals
signal belonging to group 1

signal belonging to group 2

signal belonging to group 3

signal belonging to group 4

signal belonging to group 5



Approaches to Signal Grouping

WRAPPER APPROACH

n SIGNALS

SEARCH 

ENGINE

CANDIDATE 

GROUPS

PERFORMANCE 

EVALUATION

OPTIMAL 

GROUPING

SEARCH ALGORITHM

HOW TO SPLIT THE SIGNALS INTO SUBGROUPS?

AAKR

A-PRIORI CRITERIA

(signals divided on the basis of…)

• location in the power plant

• correlation

• physical homogeneity

• others



The Wrapper Approach: Genetic Algorithms

SEARCH ENGINE

Genetic Algorithms

CHROMOSOME

n genes = n signals

PERFORMANCE EVALUATION

fitness = Accuracy

GENE
signal

1
signal

2
signal 

3
…

signal
i

… signal n

GROUP LABEL

(integer number)
1 1 2 3 3 2 3



Results

OBTAINED GROUPINGS

correlation

GA

MAIN DIFFERENCE:

signals which have a low degree of correlation are divided in groups and/or 

mixed with signals with a high degree of correlation



Results: Wrapper Approach
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FAULT CLASSIFICATION
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Application: NPP turbine

AVAILABLE DATA:

• Number of transients: N=115

• Transient time length: 4500t

• Number of vibration signals: K=7



• examples are unlabeled

Scope

Find hidden 

structure in data

Objective: Unsupervised Clustering for Fault Diagnosis

Feature 1

F
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 2

The problem



Objective: Unsupervised Clustering for Fault Diagnosis

• examples are unlabeled

• there is no error or reward to 

evaluate a potential solution

unsupervised 

clustering 

Feature 1

F
ea

tu
re

 2

2

3

1

v3

v2

v1

The problem



Methodology

STEP 1: feature extraction

STEP 2: unsupervised clustering
time

Signal 1

 

 

Signal 2
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Feature Extraction: Fuzzy Similarity Analysis (1-D)

1- Transients pointwise difference computation:

i-th transient

2- Transients pointwise similarity computation:

μ (i,j) is the membership value of the distance δ
(i,j) to the condition of “approximately zero”

3- Similarity Matrix W definition:

x(t)

Time (t)
j-th transient
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j-th transient

i-th transient
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Feature Extraction: Spectral Analysis

1- Similarity matrix W  Fully connected graph G(vi,eij)

vi =transient i
 ,ije i j

vj =transient j

   

   

   

   

1 1,2 ... 1,9

2,1 1 2,3 ...

... 3, 2 ... 8,9

9,1 ... 9,8 1

 

 

 

 

 
 
 
 
 
  



Similarities

Spectral Analysis: the scope

Identify the most appropriate features for

- partitioning the graph G(vi,eij)



Spectral Analysis: the scope

Identify the most appropriate features for

- partitioning the graph G(vi,eij)

- shuffling matrix W to highlight blocks of similarity

Clusters



6

2 Spectral Analysis: The procedure for feature selection

2- Compute the degree matrix D:

3- Compute the Normalized Laplacian matrix Lsym:

4- Compute the first C eigenvalues of Lsym

(                  are very small, but          is relatively large)

5- Compute the first C eigenvectors   of Lsym
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Result discussion

• The obtained clusters are representative of different operational

conditions /maintenance actions done on the component (i.e.,

chronological order of the transients):
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Results: Spectral clustering
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FAULT PROGNOSTICS



Case study: LBE-XADS

The model of the LBE-XADS has been embedded within an MC-driven fault 

injection engine to sample component failures.
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Upper threshold

Lower threshold

“High-temperature failure mode”

“Low-temperature failure mode”

“safe”

4 control/actuator faults

64 accident scenarios



Similarity-based approach for prognostics of the 

available Remaining Useful Life

Data-driven Fuzzy Similarity Approach

Remaining Useful Life (RUL)

Data from failure dynamic 

scenarios of the system

Library of reference trajectory patterns

New developing accidental scenario
Fuzzy-similarity 

comparison

prediction



Methodology: Fuzzy Similarity Analysis

1- Trajectory pointwise difference computation:

n-long test trajectory pattern (Fig.1)

n-long , j-th interval of  the i-th treference trajectory pattern (Fig. 1)

2- Trajectory pointwise similarity computation:

μ (i,j) is the membership value of the distance

δ (i,j) to the condition of “approximately zero”

3- RULi (t) estimation:

4- RUL estimation:

Weighted sum of the RULi , i=1,2,…,N

RUL =wi ·RULi with i=1,2,…,N

Figure 1



Results
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Tools for a SMART Reliability and Maintenance 

Engineering for Modern Industry
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