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Problem Formulation
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Centralized Solution Paradigm

• Nonlinear programming approaches for OPF 
have been widely proposed in the literature.

• These techniques propose the adoption of 
centralized control strategies that identify, for 
each network state, the optimal set points of the 
voltage regulators by solving the previously 
formalized optimization problem.

• In addressing this need they employ a 
mathematical model of the power network. 



Main Limitations
• This hierarchical control paradigm asks for the 

deployment of a central fusion centre acquiring 
and processing all the grid measurements. 

• It could be not affordable in addressing the 
increasing network complexity and the massive 
pervasion of distributed generators 
characterising modern smart grids. 

• Unaffordable complexity, hardware 
redundancy, network bandwidth and data 
storage resources are the main barriers 
imposed by technology and costs



Modern Trends and Enabling 
Technologies

• Conceptualization of new control paradigms for 
distribution of the intelligence at urban 
substation level (e.g. delocalization of functions 
usually processed by the remote control centres)

• Implementation of communications from urban 
substations to remote centres but also among 
substations and among systems at substation 
level (pervasive communication networks);

• Use of international standards to improve 
interoperability



Modern Trends and Enabling 
Technologies

• In this connection the integration of bio inspired 
computing and agent based design has been 
recognized as a very promising research 
domain. 

• This is mainly due to broad application of 
distributed decision making in coordinating 
networks of dynamic agents aimed at enhancing 
operational effectiveness in networked 
autonomous systems



The Proposed Approach

• According to this scientific trend, we intend to 
make a further contribution toward the 
conceptualization of decentralized non-
hierarchal computing architectures based on 
cooperative dynamic agents. 

• Similarly to self-organizing biological 
populations, the network voltage control is 
achieved by cooperation of the single agents 
that communicate with a reduced number of 
surrounding elements by short range 
communication links



The Proposed Approach

• The systems of nearby agents are updated 
by proper local coupling strategies derived 
from the theory of distributed consensus. 

• This strategy allows all agents to quickly 
synchronize to a function of the variables 
sensed by all agents in the Smart Grid.

• Thanks to this feature, each agent can 
assess, in a totally decentralized way, the 
most relevant variables of the global Smart 
Grid.



• The global variables are amalgamated 
with local measurements and processed 
by each agent according to several control 
algorithms.

• This allow control agents to decide if and 
when a reactive power flow injection in the 
network is most useful, based on the 
global network conditions. 

The Proposed Approach



The Proposed Architecture

The proposed architecture is based on a network of 
cooperative smart controllers, each regulating the voltage 
magnitude of a specific Smart Grid bus.
Each controller is equipped by five basic components:

– a set of sensors measuring the available set of local electrical
variables (i.e. voltage magnitude, active and reactive bus 
power);

– a dynamical system, whose state is initialized by sensor 
measurements and evolves interactively with the states of 
nearby controllers according to a bio-inspired paradigm; 

– a short range communication interface carrying the interaction 
among controllers by transmitting the state of the dynamical 
system and receiving the state transmitted by the other nodes.

– a local optimizer regulating the reactive power flows injected by 
the DGS into the electrical grid.



Theory of Operation

Let’s consider a set ofN agents 1( ,.., )Nv vΓ = , interacting over a network whose topology is 

described by a graph ( , )G AΓ with adjacency matrix { }ijA a= . Let { }: 0i j ijN v a= ∈ Γ ≠ be the set of 

neighbours of agent iv . (i.e. agent jv  can exchange information to agent iv  if and only if j iv N∈ ). 

Let ix ∈ℜ represent the state of the agent iv . We say the agents network have reached a consensus if 

and only if i jx x= for all , [1, ]i j N∈  and i j≠ .  

We suppose that the agent stateix evolves according to the following differential equation: 
( , ) [1, ]i i ix f x u i N= ∈&  

And the network state evolves according to the network dynamics ( , )x F x u=& . Where, ( )1,.., Nx x x=

and ( , )F x u is the columnwise concatenation of the elements ( , )i if x u  [1, ]i N∈ . 



Theory of Operation
Let : Nγ ℜ → ℜ be a N variables function and (0)a x=  denote the initial state of the system.  

The γ − consensus problem is a distributed way to calculate ( )aγ by applying inputs iu that only 

depend on the states of agent iv and its neighbours. 

We say a state feedback 
1

( ,.., )
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with indices ( )1,.., nij j satisfies the property { }i i iJ v N⊂ ∪  and iJ N< .  

 
A distributed protocol asymptotically solves the γ − consensus problem if and only if there exists an 

asymptotically stable equilibrium *x of ( , ( ))x F x k x=& satisfying * ( (0))ix xγ= for all [1, ]i N∈ . 

In our study we are mainly interested in computing 
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as average consensus, max-consensus, and min-consensus respectively. 



Theory of Operation

In solving the average consensus problem we adopted the following linear coupling protocol: 
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i
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It is possible to rigorously demonstrate that this protocol allows the agents to asymptotically reach a 
consensus. 
 
Besides the convergence proprieties of this consensus protocol is governed by the eigenvalues of 
the network topology. 



Theory of Operation

As far as the max-consensus is concerned, it can be solved by adopting the following distributed 
protocol: 
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This protocol allows all the agents to iteratively converge to the state of the max leader (namely the 
agent characterized by the highest state) after a maximum of 1N −  iterations. A similar distributed 
approach could be used to solve the solves the min-consensus problem. 



Theory of Operation

In particular, if the sensor nodes sense the bus voltage magnitude, the following vector of observations could be adopted 
to initialize the dynamical systems: 

( )*,i i i iV V VΘ = −  

where iV and *
iV are the current and nameplate voltage magnitudes at bus i , respectively. 

 
In this case, it is easy to show that the dynamical systems synchronize to the mean grid voltage magnitude and the 
average voltage magnitude deviation: 

*
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where n  is the number of buses. 



Theory of Operation

Other variables of interest can be easily assessed by a proper selection of the vector of observations. 
In particular if the sensor nodes sense the active and reactive bus power, the following vector of observations could be 
adopted to initialize the dynamical systems: 

( )GiGiqiGiGipiLiGii QQcnPPcnPPn ⋅⋅⋅⋅−⋅=Θ )(,)(),(  

where GiP and LiP are the active power generated and absorbed at bus i ; giQ  is the reactive power generated at bus i ; 

)( Gipi Pc  and )( Giqi Qc are the costs of the active and reactive powers generated at bus i ; 

 
In this case, the dynamical systems synchronize to the active system losses and to the total cost of active and reactive 
power: 
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Theory of Operation

• Thanks to the employment of this bio-inspired paradigm, 
each voltage controller knows both the variables 
characterizing the monitored bus (sensed by in-built 
sensors) and the global variables describing the actual 
performance of the entire Smart Grid (assessed by 
checking the state of the dynamical system). 

• The knowledge of these variables allows each controller to 
assess the evolution of the objective function and, 
consequently, to search for its minimum.



Theory of Operation

In searching for the minimum of the objective function two 
direct search algorithms have been proposed:

•Gradient descent

•Simulated Annealing



Distributed Gradient Descent

• The proposed algorithm first estimates the global variables 
characterizing the actual operation of the Smart Grid by 
adopting the described bio-inspired paradigm. 

• These variables are then processed in order to estimate 
fopt,k and ∆fopt,k representing, respectively, the value and 
variation of the objective function describing the regulating 
objectives at time step .



Distributed Gradient Descent

Once these variables have been assessed, the variation of 
the i-th continuous control variable at time step k can be 
identified by adopting a gradient descent algorithm:
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Simulated Annealing
• The agents first estimate the global variables 

characterizing the actual operation of the power 
distribution system by adopting the described distributed 
consensus protocols. 

• These variables are then amalgamated in order to 
compute the value of the objective function describing the 
regulating objectives at the time step tk.

• Once this variable has been assessed, the new regulation 
asset can be identified by adopting a SA based search 
technique.



Simulated Annealing
• The rationale of this algorithm is to interpret  the objective 

function as an energy function and to randomly generate a 
new candidate solution  in the neighborhood of the current 
one.

• The move to the new candidate feasible solution is 
accepted if it is minor in the objective value to the current 
one. 

• Nevertheless, an inferior candidate solution has a chance 
of acceptance with a probability,  P , given by the 
Boltzmann distribution:



Simulated Annealing

• Nevertheless, an inferior candidate solution has a chance 
of acceptance with a probability,  P , given by the 
Boltzmann distribution:

tk

E

kT
P e

−∆

=

1 1( , ) ( , )k k k kE J x J x+ +∆ = Γ − Γ

1k kt tT Tα+ =

• The move to the inferior solution is accepted only if P>r, 
where r is a distributed random number drawn in the range 
[0, 1]. 



Simulated Annealing
• This iterative process terminates when a fixed stopping criterion 

is reached (i.e. the absolute value of the objective function 
variation is less than a fixed tolerance). 

• In this case no optimization is required and the optimizer agents 
compute only the actual value of the objective function. 

• When an objective function variation is sensed by the optimizer 
agents network (i.e. due to grid state variation) then a new 
optimal asset should be identified. 

• In this case the temperature is fixed to its initial value and the 
iterative search algorithm is reactivated 



Simulation Studies



The IEEE 30 bus Test System



The IEEE 30 bus Test System
• A network of 30 optimizer agents characterized by the same 

adjacency matrix of the power network have been deployed on 
each bus.

• Six dispatchable generators have been considered in our studies
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Obtained Results
Distributed Gradient Descent
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Obtained Results
Distributed Simulated Annealing
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Obtained Results
Distributed Simulated Annealing
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Centralised approach
Distributed Meta-Heuristic optimizers
Distributed Gradient Descent Optimizers



Result Discussion
• The obtained results show that the solution computed by the meta-

heuristic optimizer agents is very close to the centralized solution
computed by the rigorous optimization algorithm. 

• As expected the interior point based optimization method exhibits 
better performances in terms of convergence. On the other hand it 
requires a detailed model of the power system and a data fusion 
center acquiring and processing all the power systems 
measurements.

• On the contrary the proposed approach addresses the voltage 
regulation problem by employing a fully decentralized / non-
hierarchal paradigm. 

• In fact the actual values of the objective function have been 
assessed without the need for a data fusion center, while the 
regulation strategies have been identified by optimizer agents 
processing global and local variables. 



Result Discussion

• As far as the results comparison with the distributed 
gradient descent technque is concerned, it is possible to 
note that the SA method exhibit better performances in 
terms of minimization performances. 

• This is mainly due to the effectiveness of the SA based 
minimization technique which allows the optimizer 
agents to escape from local minima. 

• In this connection we strongly believe that a synergic 
integration of these two techniques could allow us to 
improve the overall performance of the distributed 
regulating framework. 



A Different Perspective

Solving the Voltage Regulation Problem 
by Distributed and Cooperative Fuzzy 

Agents



Prolegomeni

• Fuzzy logic has been recognized as an effective 
tool in designing prompt, effective and robust 
centralized voltage control strategies. 

• Our idea is to support the evolution of fuzzy 
based regulation architectures from traditional 
client/server to highly scalable, self-organizing 
and distributed paradigms.

• In addressing this need we propose the 
employment of cooperative and distributed fuzzy 
agents



Prolegomeni

• The insight is to distribute the fuzzy 
operators needed to address the voltage 
regulation problem by a totally 
decentralized/non hierarchical paradigm. 

• This is obtained by applying the theory of 
consensus decision making for 
coordinating a networks of dynamic agents



A Centralized fuzzy based 
solution paradigm

• The most common fuzzy based solution 
algorithm currently adopted in addressing the 
voltage control problem is structured in two 
computation phase.

• In the first stage the fuzzy sets theory is 
employed to identify a feasible solution set
while, in the second stage, a proper selection 
criteria aimed at identifying the optimal control 
solution is applied.



A Centralized fuzzy based 
solution paradigm

The insight is to introduce two fuzzy variables 
aimed at describing the voltage violation level for 
each violation bus and the controlling ability for 
each voltage control device.
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A Centralized fuzzy based 
solution paradigm

These two fuzzy variables are processed by using 
the max–min operation in order to identify a 
feasible solution set for voltage quality 
enhancement:

( ), max min ,

1,2,..

1, 2,.. 1

i ijopt j V C
i

L

L L

R u u

i N

j N N N

∆=

=
 = + + −

Ropt,j represents the membership value of controlling ability for 
voltage controlling device installed at bus  j on the controlled 
bus i.



A Centralized fuzzy based 
solution paradigm

Starting form these candidate control solutions, in 
the next phase proper selection criteria aimed at 
identifying the optimal control solution should be 
applied:

* ,maxj opt j
j

R R= ( )(1) (2)
* min( , ,.., )LN N

j L L LR P P P −=



A Centralized fuzzy based 
solution paradigm

• Once the optimal control solution has been 
identified, its impact on the power system is 
assessed by a power flow analysis and, if all the 
buses voltage magnitude satisfies the 
network constraints, the control algorithm 
terminates.

• Otherwise a new control iteration aimed at 
removing the voltage anomalies should be 
processed.



A distributed fuzzy based 
solution approach

• We propose an alternative control paradigm based on 
the “think locally act globally” principle. 

• The insight is to employ the theory of consensus 
decision making for coordinating a networks of dynamic 
agents

• Thanks to this feature the fuzzy based operations 
needed to address the voltage control problem could be 
easily computed by the agents according to a totally 
decentralized/non hierarchical paradigm.



To this aim the following issues should be fixed:
– the mean, minimum and maximum load buses 

voltage magnitude should be computed by the 
agents in order to activate the voltage control 
adjustment procedure;

– all agents should know the controlling margin of 
each voltage controlling device in order to 
compute and fuzzify the corresponding control 
ability

– The agents should implement the desired 
selection criteria by computing Rj.

A distributed fuzzy based solution approach



First Phase

In addressing the first issue all agents should acquire the 
local bus voltage magnitude. 
This measurement is adopted as the initial value of the 
agent state vector:

(0) [ , , ] [1, ]i i i ix V V V i N= ∈

The first component of this vector evolves according to the 
linear coupling protocol, while the second and third component 
evolve according to the maximum and minimum coupling 
protocol respectively.



First Phase

Consequently when the consensuses are 
reached, the state of all agents converges to 
the following values:
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1
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Second Phase

In addressing the second issue, the state of each 
control agent should be broadcasted along the 
network. To this aim the agent state vector should 
be initialized by: 

(0) [0,..,0,..,0] [1, ]

(0) [0,.., ,..,0] [ 1, ]
i L

i i L

x i N

x M i N N

= ∈
 = ∈ +

and an average consensus problem should be 
solved according to the linear coupling protocol 



Second Phase

In this case, when the consensus is reached the 
state of all control agents converges to the 
following values:

1 2* , ,..,
L LN N Nx NM NM NM+ + =  



Third Phase

Finally, as far as the issue 3 is concerned, the state 
of each agent should be initialized by the following 
values depending by the selection criteria adopted:

and an average consensus problem should be 
solved according to the linear coupling protocol 

,(0) [1, ]i opt i Lx R i N= ∈
( )(0) [1, ]i

i L Lx P i N= ∈



Final Phase

The optimal control strategy is finally selected by 
the agents by solving a maximum or minimum 
consensus problem respectively. 



Simulation Results



Bus Controlled Variable 
Upper 
Bound 
[p.u.] 

Lower 
Bound 
[p.u.] 

1 Bus voltage magnitude 0.95 1.05 
2 Bus voltage magnitude 0.95 1.05 
5 Bus voltage magnitude 0.95 1.05 
8 Bus voltage magnitude 0.95 1.05 
11 Bus voltage magnitude 0.95 1.05 
13 Bus voltage magnitude 0.95 1.05 
24 Reactive Power -0.2 0.2 
26 Reactive Power -0.2 0.2 
28 Reactive Power -0.2 0.2 
30 Reactive Power -0.2 0.2 

 

Available voltage controllers

A sensor network composed by 30 cooperative agents distributed along 
the power system (one for each bus) has been deployed. 
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Evolution of the Agent states in the task of 
computing global grid variables



Effects of the Voltage Control Strategy
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Effects of the Voltage Control Strategy

10 20 30 40 50 60 70
0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

M
in

im
um

 V
ol

ta
ge

 M
ag

ni
tu

de
 [

p.
u.

]

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

Iterations

C
on

tr
ol

 M
ar

gi
n 

[p
.u

.]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iterations

R
op

t =
 m

ax
(R

op
t,i

) 
 [p

.u
.]

Evolution of the Agent states in the task of 
estimating the control margin

Evolution of the Agent states in the task of 
estimating the minimum voltage magnitude

Evolution of the Agent states in the task of 
selecting the optimal control action



Conclusions

• Modern trends in Smart Grids are oriented 
toward the deployment of control architectures 
that move away from the older centralized 
paradigm to a system distributed in the field with 
an increasing pervasion of smart agents where 
central controllers play a smaller role.

• In supporting this complex task we proposed the 
concept of a distributed and self-organizing 
voltage control architecture based on 
cooperative dynamic agents.



Conclusions

• The distributed agent employ traditional sensors to 
acquire local bus variables and distributed consensus 
protocols to assess the main variables that characterize 
the global Smart Grid operation. 

• These variables are then amalgamated in order to 
identify proper control actions aimed at improving the 
bus voltage magnitude profile.

• The results obtained on a test power system show as 
this control paradigm allows the dynamic agents to 
detect local voltage anomalies since they know both the 
performances of the monitored buses and the global 
performances of the entire grid. 



Conclusions

• The convergence of this process corresponds 
well with the time constraints characterizing the 
voltage regulation process in Smart Grids. 

• This is obtained without the need of a central 
fusion center acquiring and processing all the 
node acquisitions. 

• This makes the overall monitoring architecture 
highly scalable, self-organizing and distributed.


