Big Data 2.0 Processing Systems:
Technologies, Challenges and Opportunities

Sherif Sakr

2nd International Forum on Research and Technologies for Society and Industry

(RTSI 2016)
Bologna, Italy
7-9 September 2016

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 1 /206

Today's Agenda

Big Data Phenomena

Big Data 1.0 Systems
e Hadoop

e Hadoop Extensions

Big Data 2.0 Systems
o General-Purpose Systems

e Big SQL Systems
e Big Stream Processing Systems

o Big Graph Processing Systems

v 4

QJ\\

Open Challenges

£

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

2 / 206

Part |

Big Data Phenomena

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 3/ 206

Big Data

o Data is key resource in the modern world.

@ According to IBM, we are currently creating 2.5 quintillion bytes of
data everyday.

o IDC predicts that the world wide volume of data will reach 40 zettabytes
by 2020.

@ The radical expansion and integration of computation, networking, dig-
ital devices and data storage has provided a robust platform for the
explosion in big data.

”Da.ta Wm@e th.e
most crucial asset for
W

enterprise

#HCC2015 \ y Y HUAWEI

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 4 / 206

On the Verge of A Disruptive Century: Breakthroughs

Gene

Ubiquitous

Sequencing and Computing

Biotechnology

Smaller, Faster,
Cheaper Sensors

Faster
Communication

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 5/ 206

Big Data Applications are Everywhere

Multi-channel

Smarter Healthcare sales

p',‘s

Finance

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 6 / 206

Big Data

@ Data generation and consumption is becoming a main part of people's
daily life especially with the pervasive availability and usage of Internet
technology and applications.

More Devices

More Access

More Apps :
More Data...

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 7 / 206

Big Data

r
A
50
TRILLION

= : Embedded aftr—w IR,
Connected People Revenue O [y Intelligent Systems GBs of Data

Oﬁ'

Source: Mario Morales, IDC

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 8 / 206

Big Data: What Happens in the Internet in a Minute?

(| Tube]

145782
Video Hours
Watched

Google

foursquare
2205

(Check-Ins

B

S. Sakr (RTSI'16)

Video Hours Uploaded

290304
Searhes

$100926
Ad Revenue

yelp‘:ﬁ
315

Reviews

3288348 ues
3463488 st
378 GB oitaa

Linked [g

11466

User Searches

(-1

214375014
s Sent

819 conmens
13356 vetes

ew
«*
729162

1166697 vies
63000 comments
43722 wpisaded

®

364581

Storles Viewed

510426

Messages Sent

NETELIX PANDORA

24318 64197

Hours Watched Hours Streamed

Big Data 2.0 Processing Systems

1422162

Your Smart Phone is now Very smart

Screen Test Travel New:

Adanced Androld Barcode
TeskMana. BateryDo.. Scamner

Wifi Analyrer Ocads Thinkbroad

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 10 / 206

Big Data: Internet of Things

@ We are witnessing radical expansion and integration of digital devices,
networking, data storage and computation systems.

@ We now have smart TVs that are able to collect and process data, we
have smart watches, smart fridges, and smart alarms.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 11 / 206

Big Data: Activity Data

Simple activities like listening to music or reading a book are now
generating data.

Digital music players and eBooks collect data on our activities.

Your smart phone collects data on how you use it and your web
browser collects information on what you are searching for.

Your credit card company collects data on where you shop and your
shop collects data on what you buy.

o It is hard to imagine any activity that does not generate data.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 12 / 206

Big Data

@ The cost of sequencing one human genome has fallen from $100
million in 2001 to $1K in 2015

Sequencing Cost per Genome: 2001 to 2020
5100,000,000.00 -
510,000,000.00 A
51,000,000.00 -
5100,00000 -
510,000.00 4
$1,000.00
510000

510.00

51.00

50.10

s0.01

50.00 T T T T

Sep01 Sep03 Sep05 Sepd7 Sep08 Sep-11 Sep-13 Sep-15 Sep-17 Sep-13

=R apid Progress Average Progress e=={CyrrentProgress

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 13 / 206

New Types of Data

®

Sentiment

understand how
customers feel
about your brand
and products
-right wow

v

Geographic

Analyze location
based data to
manage operations
where they occur

S. Sakr (RTSI'16)

%

Clickstream

Capture and analyze
website visitors' data
trails and optimize
your website

Server Logs

Research logs to
diagnose process
failures and prevent
security breaches

Big Data 2.0 Processing Systems

'O;

Sensors

Discover patterns in
data streaming
automatically from
remote sensors and
machines

[=]

Unstructured

Understand pat-
terns in files across
millions of web
pages, emails, and
documents

14 / 206

The Data Structure Evolution Over the Years

AN
Large Measured in Measured in Measured in
TERABYTES PETABYTES EXABYTES
1TB=1,000 GB 1PB=1,000 TB 1EB=1,000 PB

Volume of information

Small
1990s 2000s 2010s
(RDBMS & DATA (CONTENT & ASSEST (NO-SQL & KEY
WARHOUSE) MANAGMENT) VALUE)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 15 / 206

Shift in Application Requirements

A shift in Advertising

))

A shift in Financial services

From Educated ...to Automated
investment Algorithms

A shift in Healthcare

A shift in Retail

From Static branding))) Pl;f'go?leaalilz’:::‘.?:n

A shift in Telco

From break then fix))) ...to repair before break

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 16 / 206

Big Data (3V)

Velocity

s

-

Variety

ey

Volume

Data in Motion
Analyisis of streaming data to

enable dedisions within fractions
of asecond.

Text, M’ultimedia.

A

A

L]
Data in Many Forms
Structured,Unstructured,

Data at Scale
Terabytes to Petabytes of data.

17 / 206

Big Data 2.0 Processing Systems

Sakr (RTSI'16)

Data in Money
Business models can be

|
|
|
.

\
I
y §388 1
g sEE% |
8 23zt |
£ Eeff
8 §gfdr
L
5888 |
5 |
|
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII \\
\
0 |
S TN B PR
2030p o w.m.m]
4B B4 N
[) b
.0..Ao =i !
° 8 =" 1
° 4 g & !
|
)
\
s |
o 1
m”m |
g8 |
H .
s 52 !
£ f85
R ER
&8 83 |
B
|
o

; .
L
Data at Scale
Terabytes
datato process.

18 / 206

Big Data 2.0 Processing Systems

Sakr (RTSI'16)

Big Data

From the dawn of civilization until
2003, humankind generated five
exabytes of data. Now we produce
five exabytes every two days...and
the pace is accelerating.

Eric Schmidt,
Executive Chairman, Google

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 19 / 206

Big Data Definition

@ McKinsey global report described big data as the next frontier for in-
novation and competition.

@ The report defined big data as " Data whose scale, distribution, di-
versity, and/or timeliness require the use of new technical architectures
and analytics to enable insights that unlock the new sources of business
value"

Research Report

Big Data: The
Next Frontier
for Innovation

MeKinsey & Company

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 20 / 206

Big Data Revolution

B W ROB THOMAS & PATRI

BIG DATA
REVOLUTION

WHAT FARMERS, DOCTORS AND INSURANCE A
TEACH US ABOUT DISCOVERING BIG DATA P

NTS
NS

WILEY

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 21 / 206

IBM 5MB Hard Disk ;-)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 22 / 206

Big Data

@ Moore’s Law: The information density on silicon integrated circuits
double every 18 to 24 months

@ Users expect more sophisticated information

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 23 / 206

Fourth Paradigm

@ Jim Gray, a database pioneer, described the big data phenomena as
the Fourth Paradigm and called for a paradigm shift in the computing
architecture and large scale data processing mechanisms.

@ The first three paradigms were experimental, theoretical and, more
recently, computational science

The
FOURTH
PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 24 / 206

Computing Clusters

@ Many racks of computers, thousands of machines per cluster.
@ Limited bisection bandwidth between racks.

F IR

e
o s
g
o’
- g
.:l.

i

z9

B

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 25 / 206

Data Centers

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

Part |l

Big Data 1.0 System: The Hadoop Decade

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 27 / 206

A Little History: Two Seminal contributions

e "The Google File System”!

o Describes a scalable, distributed, fault-tolerant file system tailored for
data-intensive applications, running on inexpensive commodity hardware,
delivers high aggregate performance

e "MapReduce: Simplified Data Processing on Large Clusters’?

o Describes a simple programming model and an implementation for pro-
cessing large data sets on computing clusters.

1S. Ghemawat, H. Gobioff, S. Leung. The Google file system. SOSP 2003
2). Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
OSDI 2004

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 28 / 206

The Architecture of Google File System

Master manages metadata

Files broken into chunks (typically 64MB)

Chunks are replicated across three machinery for fault-tolerance
Data transfer happens directly between the clients and chunkserves.

Masters

Chunkserver 1 Chunkserver 2 Chunkserver N

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 29 / 206

What is MapReduce?

@ A simple and powerful programming model that enables easy develop-
ment of scalable parallel applications to process vast amounts of data
on large clusters of commodity machines

@ Hide messy details in distributed programming:
Automatic parallelization

Load balancing

o
o Network and disk transfer optimization
e Handling of machine failures

S. Sakr (RTSI'16)

Processor Processor
e
| memory | | Memory
Processor Pr}e&wr
3 Al—
| flcmary | | Memory |

Big Data 2.0 Processing Systems

30 / 206

MapReduce's Programming Model
@ The computation takes a set of key/value pairs input and produces a
set of key/value pairs as output.

@ The computations are expressed using two functions: Map and Re-
duce.

@ The Map function takes an input pair and produces a set of interme-
diate key/value pairs.

@ The MapReduce framework groups together all intermediate values as-
sociated with the same intermediate key | and passes them to the
Reduce function.

@ The Reduce function receives an intermediate key | with its set of
values and merges them together.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 31 / 206

MapReduce's Execution Architecture

User
Program
(1) fork (1}fork

/7 e
%
fileO

Split 3

—_—

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 32 / 206

MapReduce's Programming Example

1 1
2 map(String key, String value): 2 reduce(String key, Iterator values):
3 ! » document name 3 /f key: a word
4 #/value: document contents 4 ues: a list of counts
5 for each word w in value: 5 result=0;
6 Emitintermediate(w, “1”) 6 foreachvin values:
7 7 result += Parselnt(v)
8 8 Emit{ AsString{result)}
Input Splitting Mapping Shuffling Reducing Final Result

Bear, 1
Bear. 1 - Bear, 2

Deer Bear River [

Bear, 2
Car,2
Deer, 2

Deer Bear River
CarCarRiver gl CarCarRiver [

Deer Car Bear

River, 2

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 33 / 206

Hadoop®: A Star is Born

@ Hadoop is an open-source software
framework that supports data-intensive
distributed applications and clones the
Google's MapReduce framework.

o It is designed to process very large
amount of unstructured and complex
data.

@ It is designed to run on a large number
of machines that don't share any memory
or disks.

@ It is designed to run on a cluster of ma-
chines which can put together in rela-
tively lower cost and easier maintenance.

3http://hadoop.apache.org/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 34 / 206

Hadoop = HDFS + MapReduce

Hadoop
Map Reduce
Responsible to store the data .
in chunks(by splitting into To process thedataina
blocks of 64 mb each) massive parallel manner

Master Node Slave Node Slave Node

TaskTracker

JobTracker

’ TaskTracker | I TaskTracker |

’ DataNode | | DataNode I

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 35 / 206

Zookeeper*

@ An Open source, High Performance coordination

for distributed applications

@ Centralized service for

o Configuration Management

o Locks and Synchronization for providing
coordination between distributed systems

o Naming service (Registry)

o Group Membership

service

Hadoop

Master

)

Job Name Node ZooKeeper 0\
Tracker znode /
s

L[znode]

[znode] [znode]-' s;‘\T;\rww)

~

ol [Data Node]! [Data Node] [Data Node] —>| SC:‘Z?‘:W

J

*http://zookeeper.apache.org/
S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

36 / 206

http://zookeeper.apache.org/

Hadoop's Success

Big Data 1.0 = Hadoop

YaHoO! B° Microsoft

n cloudera
& o
O (@
YT A 3
Hortonworks
EMC een’
ORACLE EEEL

amazon

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

37 / 206

Hadoop's Success®

Big Data 1.0 = Hadoop

Hadoop

Search term

Big Data

Search term

*https://www.google.com/trends/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 38 / 206

https://www.google.com/trends/

Hadoop’s Enhancments®

@ The basic architecture of MapReduce/Haddop framework suffered from
some limitations.

@ Several research efforts that have been conducted in order to deal with
these limitations by providing various enhancements.

e Processing Join Operations

Supporting lterative Processing

Data and Process Sharing

Data Indices

o Effective Data Placement

Query Optimization

5S. Sakr, A. Liu, A. Fayoumi. The family of mapreduce and large-scale data
processing systems. ACM Comput. Surv, 2013.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 39 / 206

The Always Dilemma: Does One Size Fit All?!

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 40 / 206

Big Data 2.0 Processing Systems

Big Data 2.0 !'= Hadoop

Domain-specific, optimized and vertically focused systems

ClouderaImpala

Apache Samza
Apache s4
Trinity
B> Apache Flink PowerGraph | Apache Tajo
D> Google MapReduce D> ApacheSpark ApacheStorm Graphlab FacebookPresto Apache Phoenix
» Hadoop Apache Hive Google Pregel ApacheGiraph | IBM BigSQL GraphX P> Apache Tez
2004 L 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2015

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 41 / 206

An Overview of Big 2.0 Processing Systems

Big Data 2.0 Processing Platforms

- 7 7
General Purpose Systems Big SQL Systems Big Graph Processing Systems Big Stream Processing Systems

L e Ay éb
o STORM
asy 3o
Spor &
SHIVE FoaR
o LSO S distributeds:ream
A A C HE computin, atform
GIRAPH RS INaR

cloudera

Flink IMPALA % m
GapnLah Spcwr‘lgZ

Spor‘l'g saL %ﬁ@aph)(éFlink

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 42 / 206

Part |l

Big Data 2.0 Processing Systems:
General-Purpose Processing Engines

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 43 / 206

MapReduce for lterative Operations

MapReduce is not optimized for iterative operations

Iterations
I CPU1 I I CPU1 I I CPU1 I
CPU2 CPU2 CPU2

Disk Penalty
Startup Penalty
Disk Penalty
Startup Penalty
Disk Penalty

©
c
]
a
o
5
5
vt

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 44 / 206

Spark®
@ Apache Spark is a fast, general engine for large scale data processing
on a computing cluster (new engine for Hadoop)’

@ Developed initially at UC Berkeley, in 2009, in Scala, and is currently
supported by Databricks®

@ One of the most active and fastest growing Apache projects

o Committers from Cloudera, Yahoo, Databricks, UC Berkeley, Intel,

Groupon and others.
Sporf(z

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and |. Stoica. Spark:
Cluster Computing with Working Sets. HotCloud, 2010.
®https://databricks.com/
http://spark.apache.org/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 45 / 206

https://databricks.com/
http://spark.apache.org/

Spark

e RDD (Resilient Distributed Dataset), an in-memory data abstrac-
tion, is the fundamental unit of data in Spark

o Resilient: if data in memory is lost, it can be recreated

o Distributed: stored in memory across the cluster

o Dataset: data can come from a file or be created programmatically

@ Spark programming consists of performing operations (e.g., Map, Fil-

ter) on RDDs

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 46 / 206

Spark VS Hadoop

HDFS RAM RAM RAM
(Hard Disk) (Memory) (Memory) (Memory)

E—

HDFS HDFS HDFS HDFS
(Hard Disk) (Hard Disk) (Hard Disk) (Hard Disk)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 47 / 206

Spark VS Hadoop

@ Spark takes the concepts and performance of MapReduce to the

next level

4000
= 3500 110 s [iteration
-g- 3000 -
£ 2500 - /
';, 2000 - i & Hadoop
‘£ 1500 = u Spark
c
& 1000 \

500 - -
0 A — ._ '_ first iteration 8o s
5 10 20 30

1 further iterations 1 s

Number of Iterations

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 48 / 206

Spark VS Hadoop

@ Spark code is much more compact

sc.textFile (File) \ sprig

.flatMap(lambda s: s.split()) \
.map (lambda w: (w,1)) \
.reduceByKey (lambda v1,v2: vl+v2) \
.saveAsTextFile (output)

public class WordCount
atie void main(stringl] azge) throd

3
o lntJarayclxu(’Io:dcwun: a1
Job. setchiane ("Word Count”

Job. setiapperC:
Job. setReducerC:

Job. setoutputKayClass (Text.class) ;
Job. setoutputvaluaClass (IntHritable.class) ;
Boolean success = job.waitForCompletion (true) ;
System.exit(success ? 0 : 1)

)

public class WordMapper extends Mapper<LongWritable, Text, Text,
Inthritable> {
public void map (LongWritable key, Text value,
ST et HErD T, IR

String line = value.toString ()

for (string word : line.split("\\W+")) (

12 (vord. lengen() > 0)
Text (word) , new 0

)
)
)
)
public class SunReducer extends Reducer<Text, Intiritable, Text,
Inthritable> (
Public void reduce (Text key, Iterable<IntWritable>
values, Context context) throws IOException, InterruptedException {
€ = 0
for (IntWritable value : values) {
voraCount. += valae.gat():

text write (key, new e

)
)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 49 / 206

Flow of RDD Operations in Spark

pere ﬁ ﬁ w value

RDD

- Actions — return values
value

Base RDD
- Transformations — define a new
RDD based on the current one(s) —

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 50 / 206

Spark’s Transformations and Actions

Transformations
map Apply a transformation function to each element in the input RDD and
returns a new RDD with the elements of the transformation output as a result
filter Apply a filtration predicate on the elements of an RDD and
returns a new RDD with only the elements which satisfy the predicate conditions
distinct Remove the duplicate elements of an RDD
union Return all elements of two RDDs
cartesian |Return the cartesian product of the elements of two RDDs
intersection |Return the elements which are contained in two RDDs
subtract Return the elements which are not contained in another RDD

Actions
Action Description
take Return number of elements from an RDD
takeOrdered |Return number of elements from an RDD based on defined order
top Return the top number of elements from an RDD
count Return the number of elements in an RDD

countByValye|Return the number of times each element occurs in an RDD
reduce Combine the elements on an RDD together according to an aggregate function
foreach |Apply a function for each element in an RDD

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 51 / 206

Spark’s Stack

[Spark SQL][GraphX][Spark Streaming][MLib][Spark R]

Spark Core Engine

Apache YARN Apache Mesos

[Cassandra] [Amazon 53]

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 52 / 206

Flink!2

@ Apache Flink!? is a distributed in-memory data processing framework
which represents a exible alternative for the MapReduce framework that
supports both of batch and realtime processing.

e Flink has originated from the Stratosphere research project!! that was

started at the Technical University of Berlin in 2009 before joining the
Apache's incubator in 2014

@ Instead of the map and reduce abstractions, Flink uses a directed graph
approach that leverages in-memory storage for improving the perfor-
mance of the runtime execution.

@Flink

OFlink is a German word that means " quick” or " nimble”
Unttp: //stratosphere. eu/
nttps://flink.apache.org/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 53 / 206

http://stratosphere.eu/
https://flink.apache.org/

Flink's Features

o True streaming capabilities: Execute everything as streams
o Native iterative execution: Allow some cyclic dataflows

o Cost-Based Optimizer: for both batch and stream processing
o DataSet API for Static Data: Java, Scala, and Python

e DataStream API for Unbounded Real-Time Streams: Java and
Scala

o Table API for Relational Queries: Scala and Java

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 54 / 206

PACT Programming Model

Key Value

z Loomd
e . . .j InpUt . T = ‘" b
Contract
Input Data Independent

Data Subsets

User Code
First-order function

o ,

Output Data I:

Output !
Contract:

e

o A PACT consists of exactly one second-order function which is called
Input Contract and an optional Output Contract.

@ An Input Contract (e.g., Cross, CoGroup, Match) takes a first-order
function with task-specific user code and one or more data sets as
input parameters and invokes its associated first-order function with
independent subsets of its input data in a data-parallel fashion.

@ An Output Contract (e.g., Same-Key, Super-Key, Unique-Key, Partitioned
by-Key) is an optional component of a PACT and gives guarantees
about the data that is generated by the assigned user function.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

55 / 206

PACT's Input Contracts

@ The Cross contract which operates on multiple inputs and builds a
distributed Cartesian product over its input sets.

@ The CoGroup contract partitions each of its multiple inputs along the
key. Independent subsets are built by combining equal keys of all inputs.

e The Match contract operates on multiple inputs. It matches key/value
pairs from all input data sets with the same key (equivalent to the inner
join operation).

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 56 / 206

PACT's Output Contracts

e The Same-Key contract where each key/value pair that is generated
by the function has the same key as the key/value pair(s) from which it
was generated. This means the function will preserve any partitioning
and order property on the keys.

@ The Super-Key where each key/value pair that is generated by the
function has a superkey of the key/value pair(s) from which it was
generated. This means the function will preserve a partitioning and
partial order on the keys.

@ The Unique-Key where each key/value pair that is produced has a
unique key. The key must be unique across all parallel instances. Any
produced data is therefore partitioned and grouped by the key.

e The Partitioned-by-Key where key/value pairs are partitioned by key.
This contract has similar implications as the Super-Key contract, specif-
ically that a partitioning by the keys is given, but there is no order inside

the partitions.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 57 / 206

Flink Examples

DataSet API (batch): WordCount

val env = ExecutionEnvironment.getExecutionEnvironment ()
val lines: DataSet[String] = env.readTextFile(...)
lines.flatMap {line => line.split("™ ™)
.map (word => Word(word,1l))}
.groupBy ("word") sum ("frequency")
.print()
env.execute ()

DataStream API (streaming): Window WordCount

val env = StreamExecutionEnvironment.getExecutionEnvironment ()
val lines: DataStream[String] = env.fromSocketStream(...)
lines.flatMap {line => line.split(" ")
.map (word => Word(word, 1))}
.window (Time.of (5, SECONDS)) .every (Time.of (1, SECONDS))
.groupBy ("word") .sum ("frequency")
.print()
env.execute ()

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

58 / 206

Flink Examples

Table API (queries)

.filter ("mktSegment = AUTOMOBILE")

val orders = env.readCsvFile (..)
.filter(o =>

dateFormat.parse (0o.orderDate) .before (date))

val items = orders
.join(customers) .where ("custId = id")
.join(lineitems) .where ("orderId = id")
.select ("orderId, orderDate, shipPrio,

revenue")

val result = items

.groupBy ("orderId, orderDate, shipPrio")
.select ("orderId, revenue.sum, orderDate,

val customers = envreadCsvFile(..).as('id, 'mktSegment)

.as("orderId, custId, orderDate, shipPrio")

extdPrice * (Literal(l.0f) - discount) as

shipPrio")

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

59 / 206

The Life Cycle of Flink's Program

case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {
paths: DataSet[Path] =>
val next = paths
.join(edges)
.where("to")
.equalTo("from") {
(path, edge) =>
Path(path.from, edge.to)
}
.union(paths)

| dastinct() Pre-flight (Client)

’ Program I

deploy

intermediate
results

Dataflow
Graph

Manager 3
Job Manage Task Managers

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 60 / 206

Automatic Program Execution is Important and Needed

Wep Reduce | i ap e
5 Feature €T m'ﬂ
l» s o F;:;- " Tﬂ'lm,,z:rml::"uﬁ,.—, b 3 Theta Factors ...
oppe ety featur Proseesd
U st]) 1+ Ay Combiner 1
memory
(Locai Forward)
L o ﬂaaiw-.ﬂ)
hefs://doud- = =e - Hep. et I
7:40010 [F::eumﬁw ubd kY] Label o Map x network
1+ & Reduce (Broadcast)
g Counk oy ot I v o Tomsam g3 IO
[y =28 Mapper O3l SUM ¢ forory | hes://coud-
p -— mcumlm_l (+1 luduczrl.]l oyl 7:40010
Ma retwerc Jringwald
mema| 5 Roduce | | Goricom) 1 o
wairs DI oo T nework | (oo /
1+ (Partiton) | | (1ocal Forward) /svw;sw- 4
0]
‘ = — =
ap - Reduce Match o Weight Idf (5] | weigne 10f 8y oo o) ThetE Poctons |
Normalized T /73 Normalized Tf | &5 | DXFPn 5 Traf i 5"'"'"'“, Summer r - *
™) ®) Calculator Mapper Reducer!*) || memory
) +1 (L] (tocal Forward) o
1 hafs://clouc- (Parvition)
W 7:40010
oy Aomie
hafsi//cloud- - &
umm """L /Sigma_k/ oy
Muw N o > Theta
mm Gertir) Normalizer
J e) 210
> - (ocal Forward)
e Reduce
memat hats//couc- //doud-
resre 1 575 | et s " S)
+ Summer it Jres
Mapper (*] Reduceri*]
/sigma.if thetaNormaiizer/

Do you want to hand-optimize that?

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 61 / 206

Automatic Program Execution is Important and Needed

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

S. Sakr (RTSI'16)

Automatic Program Execution is Important and Needed

GroupRed
sort

hash-part [0,1]

Best plan
depends on
relative sizes
of input files

Join
| Hybrid Hash K

buildHT probe
broadcast forward

GroupRed

sort

Join
{ Hybrid Hash k

buildHT

\

hash-part [0]

 probe

AN

hash-part [0]

DataSource
lineitem.tbl

DataSource
orders.tbl

Filter

DataSource
orders.tbl

DataSource
lineitem.tbl

Big Data 2.0 Processing Systems

63 / 206

Flink's Stack

-
=
=
=
ic

MRQL
Cascading wir)
Zeppelin

x
Z
2
=)
I
i
©
(m]

Hadoop M/R
Google Dataflow

Distributed
Streaming Dataflow

0
£
14
<
14
1]
3
]
o
o
<

SYSTEM

Single JVM Google’s GCE
Embedded Amazon’s EC2
Docker IBM Docker Cloud, ...

DEPLOY

Local MongoDB Flume
HDFS HBase Kafka
$3, Azure Storage sSaQL RabbitMQ
Tachyon

STORAGE

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 64 / 206

Flink Community

120 4 #unique contributor ids by git commits :
100 - .'.
80 1 s In top 5 of Apache's big
.' data projects after one year
60 - F in the Apache Software
Foundation
40 -
o SP——
20 o...-0
"
@
®
Y

Aug-10 Feb-11 Sep-11 Apr-12 Oct-12 May-13 Nov-13 Jun-14 Dec-14 Jul-15

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 65 / 206

Hadoop VS Spark VS Flink

Hadoop Spark Flink
Year of Origin 2005 2009 2009

Place of Origin MapReduce (Google) UC Berkely TU Berlin

Hadoop (Yahoo)

IMGTETNINIERV M Map and Reduce function RDD PACT
R o)/ value pairs

Data Storage HDFS HDFS, Cassandra HDFS, S3
and others and others
SQL Support Hive, Impala, Tajo Spark SQL NA
Graph Support NA GraphX Gelly
Streaming Support NA Spark Streaming Flink Streaming

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

66 / 206

Part IV

Big Data 2.0 Processing Systems:
SQL-On-Hadoop

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 67 / 206

Why SQL-On-Hadoop?

Hadoop's one-input data format (key/value pairs) and two-stage data
flow is extremely rigid. As we have previously discussed, to perform
tasks that have a differen data flow (e.g. joins or n stages) would
require the need to devise inelegant workarounds.

Custom code has to be written for even the most common operations
(e.g. projection and filtering).

In practice, many programmers would prefer to use SQL as a high
level declarative language to express their task while leaving all of the
execution optimization details to the backend engine.

High level language abstractions enable the underlying system to per-
form automatic optimization.

Several studies'3 have reported that Hadoop is the wrong choice for
interactive queries on large scale structured data with target response
time of a few seconds or milliseconds.

BA. Pavlo et al. A comparison of approaches to large scale data analysis. SIGMOD

2009

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 68 / 206

Apache Hive®®

@ The first system that has been introduced to support SQL-on-Hadoop
with familiar relational database concepts such as tables and columns!4.

@ Hive has been widely used in many organizations to manage and process
large volumes of data, such as Facebook, eBay, LinkedIn and Yahoo!

@ It supports an SQL-like declarative language, HiveQL, which represents
a subset of SQL92 and therefore can be easily understood by anyone
who is familiar with SQL.

@ Hive queries automatically compile into MapReduce jobs that are run
by using Hadoop.

RIVE

%A Thusoo et al. Data warehousing and analytics infrastructure at facebook.
SIGMOD 2010
®https://hive.apache.org/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 69 / 206

https://hive.apache.org/

Hive Architecture

CLI

Parser

Planner

Execution

1]

_@

A 7

S. Sakr (RTSI'16)

RDBMS
(Postgre SQL)

4

[D

ata proccessing Engine
(Map reduce)

File format
(ORC)

Big Data 2.0 Processing Systems

storage
handler

70 / 206

Example: Joins in Hive

customer order
P

e e T

rice quantity

Potser 2934

SELECT * FROM customer join order ON customer.id = order.cid;

ik

{id: 11911, { first: Nick, last: Toner }} {id: 11911, { first: Nick, last: Toner }}
{id: 11914, { first: Rodger, last: Clayton }} { cid: 4150, { price: 10.50, quantity: 3 }}

{cid: 4150, { price: 10.50, quantity: 3 }}

{ cid: 11913, { price: 12.25, quantity: 27 }} {id: 11914, { first: Rodger, last: Clayton }}

{ cid: 11914, { price: 12.25, quantity: 27 }}

Identical keys shuffled to the same reducer. Join done reduce-side.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 71 / 206

Impalal’
@ Open source project, built by Cloudera, to provide a massively parallel
processing SQL query engine that runs natively in Apache Hadoop!®.

@ By using Impala, the user can query data which is stored in Hadoop
Distributed File System (HDFS).

@ It uses the same metadata, SQL syntax (HiveQL) of Apache Hive.

@ Impala does not use the Hadoop execution engine to run the queries.
Instead, it relies on its own set of daemons which are installed alongside
the data nodes and are tuned to optimize the local processing to avoid
bottlenecks.

cloudera

M. Kornacker et al. Impala: A Modern, Open-Source SQL Engine for Hadoop.
CIDR 2015

"http://impala.io/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 72 / 206

http://impala.io/

Impala Architecture

@ The Impala daemon (impalad) that accepts queries from client processes and
orchestrates their execution across the cluster.

@ The Statestore daemon (statestored) is a meta-data publish-subscribe component
which disseminates cluster-wide metadata to all Impala processes.

@ The Catalog daemon (catalogd) serves as a catalog and metadata access reposi-
tory and is responsible for broadcasting any changes to the system catalog as well.

SQL App

Hive Metastore Statestore Catalog

oDBC

Results
Impalad

Impalad

Query Executor |

S. Sakr (RTSI Big Data 2.0 Processing Systems 73 / 206

IBM Big SQL8

@ The SQL interface for the IBM big data processing platform, InfoSphere
Biglnsights.

e Big SQL relies on a built-in query optimizer that rewrites the input
query as a local job to help minimize latencies by using Hadoop dynamic
scheduling mechanisms.

@ The query optimizer also takes care of traditional query optimization
such as optimal order, in which tables are accessed in the order where
the most efficient join strategy is implemented for the query.

o It uses a massively parallel processing SQL engine that is deployed
directly on the physical Hadoop Distributed File System (HDFS).

Byttp://www-01.ibm. com/software/data/infosphere/hadoop/big-sql.html
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 74 / 206

http://www-01.ibm.com/software/data/infosphere/hadoop/big-sql.html

Big SQL Architecture

SQL Coordinator — Catalog

‘Worker
node

Warker
node

Sakr (RTSI'16) Big Data 2.0 Processing Systems 75 / 206

Presto!®

@ Open source distributed SQL query engine, built by Facebook, for run-
ning interactive analytic queries against large scale structured data
sources of sizes of gigabytes up to petabytes.

@ Presto allows querying data where it lives, including Hive, NoSQL
databases (e.g., Cassandra, HBase), relational databases or even pro-
prietary data stores.

@ A single Presto query can combine data from multiple sources.

@ Presto has been recently adopted by big companies and application
such as Netflix and Airbnb.

Pnttp://prestodb.io/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 76 / 206

http://prestodb.io/

Presto’'s Timeline

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 77 / 206

Presto Architecture

Reduce Reduce

- Mo Fault Tolerance

Task All stages are pipelined
- Reduced wait time
N

Memory-to-memory
Data transfer

Wite to Disk
+ Fault Tolerance Lmizeld
- Cuerhend - Data chunk must

fitin memory

Sakr (RTSI'16) Big Data 2.0 Processing Systems 78 / 206

Presto Architecture

Client

&

Presfo Coordinator

Presto worker Presto w orker/\ Presto worker Presto worker

=D
% % sQL
cassandra IVE MySQ

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 79 / 206

Spark SQL?°

@ An alternative interface for Spark that integrates relational processing
with Spark’s functional programming API.

@ SparkSQL bridges the gap between the two models by providing a
DataFrame API that can execute relational operations on both external
data sources and Spark’s built-in distributed collections.

@ DataFrames are collections of structured records that can be manipu-
lated using Spark’s procedural API, or using new relational APls that
allow richer optimizations.

M, Armbrust et al. Spark SQL: Relational Data Processing in Spark. In SIGMOD,
2015.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 80 / 206

HadoopDB?!

@ HadoopDB is a hybrid system which is designed to attempt combining
the scalability advantages of Hadoop framework with the performance
and efficiency merits of parallel databases, Acquired by Teradata.

@ HadoopDB clusters multiple single node database systems (PostgreSQL)
using Hadoop as the task coordinator and network communication
layer.

@ Queries are expressed in SQL but their execution are parallelized across
nodes using the MapReduce framework and as much as possible is
pushed inside of the corresponding node databases.

@ HadoopDB achieves fault tolerance and the ability to operate in het-
erogeneous environments by inheriting the scheduling and job tracking
implementation from Hadoop. Parallelly, it tries to achieve the per-
formance of parallel databases by doing most of the query processing
inside the database engine.

Hnttp://db.cs.yale.edu/hadoopdb/hadoopdb. html
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 81 / 206

http://db.cs.yale.edu/hadoopdb/hadoopdb.html

HadoopDB Architecture

SQL Query

MapReduce Job

SMS Planner

MapReduce

Hadoop core
e e ——————
|

Master node
MapReduce
Framework

HDFS

[NameNode]

[JobTracker]

|
|
|
|
|
|
: InputFormat Implementations
|

|

|

L P78
_________ Taskwith |
InputFormat

[Node 1~~~ ~ | (Node2 ~ T T T 1
TaskTracker		TaskTracker
—3		—3
: Database		DataNode : : Database
S W S g 4 S W S g 4

S. Sakr (RTSI'16)

Database Connector

Big Data 2.0 Processing Systems

TaskTracker

—
Database | | DataNode

82 / 206

Other SQL-On-Hadoop Systems

@ Apache Phoenix??

Apache Drill3

Actian Vortex?*

@ HP Vertica

Pivotal HAWQ

Zhttps://phoenix.apache.org/

Bhttps://drill.apache.org/

http://www.actian. com/products/analytics-platform/
vortex-sql-hadoop-analytics/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 83 / 206

https://phoenix.apache.org/
https://drill.apache.org/
http://www.actian.com/products/analytics-platform/vortex-sql-hadoop-analytics/
http://www.actian.com/products/analytics-platform/vortex-sql-hadoop-analytics/

Part V

Big Data 2.0 Processing Systems: Big Stream
Processing Systems

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 84 / 206

Big Streams

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 85 / 206

Big Streams

@ In 2010, Walmartreported that it was handling more than 1 million
customer transaction every hour.

e The New York Stock Exchange (NYSE) reported trading more than
800 million shares on a typical day in October 2012.

@ By the end of 2011, there were about 30 billion Radio-Frequency Iden-
tification (RFID) tags.

@ In all of these applications and domains, there is a crucial requirement
to collect, process and analyse big streams of data in real time fashion.

M

E\ \ ‘ - - 13

| : L BB
| o]

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 86 / 206

The Triad of Big Data Processing

Batch

Interactive Streaming

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 87 / 206

Static Data Computation VS Streaming Data Computation

X oa0 NEEZP DI o.cries EETY

a) Static Data Computation a) Streaming Data Computation

Today, in several applications data is continuously produced (e.g., user
activity logs, web logs, sensors, database transactions, ...).

@ The traditional approaches to analyze such data are:

o Record data stream to stable storage (DBMS, HDFS,...)

o Periodically analyze data with batch processing engine (DBMS, MapRe-
duce, ...)

Streaming processing engines analyze data while it arrives

The main goal of stream processing is to decrease the overall latency
to obtain results

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 88 / 206

Stream Processing Vs Batch Processing

Freshness Real-time (usually < 15 min) = Historical — usually more than 15
min old
Data A . . P
Location Primarily memory (moved to | Primarily in disk moved to memory
disk after processing) for processing
. Speed Sub second to few seconds Few seconds to hours
o = Frequency Always running Sporadic to periodic
Who? Automated systems only Human & automated systems
Clients Type Primarily operational Primarily analytical applications
systems

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 89 / 206

Hadoop for Big Streams?!

@ From the stream-processing point of view, 7
the main limitation of Hadoop is that it was @
designed so that the entire output of each &)

map and reduce task is materialized into a
local file before it can be consumed by the
next stage.

@ This materialization step enables the im-
plementation of a simple and elegant
checkpoint/restart fault-tolerance mecha-
nism. But it causes significant delay for jobs
with real-time processing requirements.

O®,
SRR
N[/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 90 / 206

Types of Streaming Architectures

1) Streaming (Distributed Data Flow) 22> ma 0

o0 f\ o0 .o
LONG-LIVED TASK EXECUTION . :::;‘; IS KEPT INSIDE
oo
2) Micro-Batch
j] IJ C 0 U ®
] oo @e9 »([@29) @
- Co S - @
- o D) (oo @
(Hadoop, Spark) (Spark Streaming)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 91 / 206

Apache Storm?®

@ Storm is a real-time distributed computing framework for reliably pro-
cessing unbounded data streams.

@ Storm is a project which is created by Nathan Marz and his team
at BackType, and released as open source in 2011 after BackType is
acquired by Twitter.

@ Part of Apache Incubator since September 2013.

@ Provides general primitives to do real time computations.

5 sTOrRM

Phttps://storm.apache.org/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 92 / 206

https://storm.apache.org/

Storm

F N

[|
|

I

|

©-0-0 —> .—> -—> ©-0-0

Input Stream output Stream
-
©-0-0 —> . ~—> ©-0-0
Input Stream output Stream

|
Distributed Execution Engine |
)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 93 / 206

Storm Concepts

@ Bolt processes any number of input streams and produces output
streams.

e
(o) Croe) i)

<

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 94 / 206

Storm Concepts

e Field Grouping provides various ways (e.g., shuffle, fields, global, di-
rect, all, custom) to control tuple routing to bolts.

BoltA

Shuffle

BoltB

s
¢

r
‘ J

BoltA

BoltB

Fields

Fields X

Fields Y

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

BoltA

Al

BoltB

LX,

2
@

Bolt A

Global

Bolt B

o0

L

95 / 206

Storm Concepts

Grouping type What it does

Shuffle Grouping Sends tuple to a bolt in random round robin
sequence

Fields Grouping Sends tuples to a bolt based on or more field's in
the tuple

All grouping Sends a single copy of each bolt to all instances

of a receiving bolt

Custom grouping Implement your own field grouping so tuples are
routed based on custom logic

Direct grouping Source decides which bolt will receive tuple

Global grouping Global Grouping sends tuples generated by all
instances of the source to a single target
instance (specifically, the task with lowest D)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 96 / 206

Storm Concepts

o Topology represents a network of Spouts and Bolts which run indef-
initely when is deployed.

Tuple Tuple Tuple
R

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 97 / 206

Storm Example

@ Counting the number of occurrences of each hash tag in an input

stream of tweets

Bolt

<
hashtags-reader |

hashtags-counter
Bolt

@ Topology Creation.

public static Topology createTopology()
TopologyBuilder builder = new TopologyBuilder();
builder. setspoutf tweets-stream”
builder.setgolt("hashtags-reader”, new HashTagsReader(),
_shuffleGrouping(tweets- stream”);

builder.setgolt("hashtags-counter”, new HashtagsCountersolt(), 2)
2 H

.fieldsGroupingi”hashtags-reader ", new Fizlds('hashtags”
return builder.createTopology();

@ Spout Creation.

public class ApistreamingSpout extends BaserRichspout {
SpoutOutputCollector collector;
TweetReader reader;
public vmd next‘rup'\a 1 i
Tweet tweet = reader.getNextTweet();
1f(tv.'aa\: 1= null)
collector.emit(new Values(tweet));

¥
public void openiMap conf, Topo'\ogycontext context,
SpoutdutputCollector colle

reader = new Twi t\:ar’Readerrcunf get("server”), conf.get("user"),

this.collector = collector;

T
public void declarecutputFields(outputFieldsDeclarer declarer) {
"3)i

declarer.declare(new Fields("tweet

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

new ApistreamingSpout(),)1) H

conf.get("pass"));

98 / 206

Storm Example

@ HashtagsReader bolt

public class HashtagsReader extends BaseBasicBolt

public void execute(Tuple input, Eas1c0utputco'l'lector collector) {
Tweet tweet = (Tweet)input.getvalueByField("twest");
for{string hashtag : tweet.getHashTags{)){
collector.emit({new values (hashtag)):

public void declareoutputrFields(outputFieldsDeclarer declarer) {
declarer.declare(new Fields("hashtag"));

1

@ HashtagsCounter bolt

public class HashtagsCounterBolt extends BaseBasicBolt {

public void execute(Tuple input, Basi coutputcoﬂectar collector) {
string key = mput gatstr1ngEyF1e1dr haszhtag™);
if(hash(key) '= nuil)
storeRec[key].value +=1;

else

storerec .insertikey,1)
T

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 99 / 206

Hadoop VS Storm

Hadoop Storm

Batch Processing

Real-Time Processing

Scalable

Scalable

Fault-Tolerant

Fault-Tolerant

Jobs Run to Completion

Topologies Runs Forever

Job Tracker is SPOF

No Single Point of Failure

Stateful Nodes

Stateless Nodes

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

100 / 206

Storm Trident?®

@ Provides a high level API abstraction (DSL) for Storm operations.

@ Process a group of tuples as a batch rather than processing tuple at a
time.

e Trident has joins, aggregations, grouping, functions, and filters.

®https://storm.apache.org/documentation/Trident-tutorial.html

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 101 / 206

https://storm.apache.org/documentation/Trident-tutorial.html

Flink Streaming

* Tasks run operator
logic in a pipelined
fashion =

* scheduling

* They are scheduled

among workers L

» State is kept within
tasks

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

%&
-

Jeis hylermager * monitoring

LONG-LIVED TASK EXECUTION

102 / 206

Spark Streaming

@ Sprak’s extension for stream processing.
@ Micro batches of RDD's.

@ Receives data streams and chop them up into batches to get processed
and pushes out the result.

Spoﬁ:zStreoming
(%]
2
data streams % I:l I:l I:l SpQr
B batches results

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 103 / 206

Spark DStreams (Discretized Streams)

@ A DStream is a sequence of RDDs representing a data stream

@ Divide up data stream into batches of n seconds
@ Process each batch in Spark as an RDD
@ Return results of RDD operations in batches

Live Data

DStream

t

S. Sakr (RTSI'16)

—

data.data.data.data.data..d

ita.data.data.

3

=0 l t=1 l t=2 l t=
RDD @ t=1 RDD @ t=2 RDD @ t=3
data.. data.. data..
data.. data.. data..
data.. data.. data..
data.. data.. data..

Big Data 2.0 Processing Systems

104 / 206

The Lambada Patterns

Data
Consumers

Serving Layer

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 105 / 206

Part VI

Big Data 2.0 Processing Systems: Big Graph
Processing Systems

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 106 / 206

Why Big Graph Processing?

People, devices, processes and other entities have been more
connected than at any other point in history!

DNy

Y
~J

~

.-\“‘-\
//f
”~
e
//,..--—.__
(\

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 107 / 206

Why Big Graph Processing?
Graphs Are Everywhere!

[The nermet

=

Web Graph

X DS .
Protein Interactions Food Web

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 108 / 206

Graph Applications are Exploding

Google: > 1 trillion
"| indexed pages
=] e
T | i
.z} o
Web Graph

Facebook: > 1 billion
active users

100M Ratings,
480K Users,
17K Movies

| 31 billion RDF
*| triplesin 2011

De Bruijn:
4 nodes
(k = 20, ..., 40)

Information Network Biological Network

Graphs in Machine Learning

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 109 / 206

Big Data != Big Graph

o 140 billi
Data size: facebook. connelc:i)c?ns

Computation:

chrishrugan

F’."‘g:’ . ‘\. b

@ Lady Gaga
ladygaga

When POP sucks the tits of ART.
New York, NY - httpz//www.ladygaga.com

Hard to scale

Followed by Agile informatics, 6Media, Tina Kelly and 28 others,

2,000 137,436 30,085,081

Twitter network visualization,
by Akshay Java, 2009

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

=1TB

Not a problem!

110 / 206

Parallel Data Processing vs Parallel Graph Processing

Data-Parallel

Table

0

T
Sl

S. Sakr (RTSI'16)

-

Graph-Parallel

Dependency
Sraph

Big Data 2.0 Processing Systems

111 / 206

Parallel Data Processing vs Parallel Graph Processing

Data-Intensive VS

Complex Computation-Intensive

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 112 / 206

Examples of Graph Processing Algorithms

PageRank

Triangle Counting
Connected Components
Shortest Distance
Random Walk

Graph Coarsening

Graph Coloring

Minimum Spanning Forest
Community Detection
Collaborative Filtering
Belief Propagation

Named Entity Recognition
... And Many Others

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

PageRank

i
8/ G

Triangle Count

Connected
Components

L {
AN []

S
/
(U

113 / 206

Main Challenges of Graph Processing

Data is dynamic —— > No way of doing "schema on write"

(]

Structure driven computation —— > Poor Memory Locality and
Data Transfer Issues

Algorithms are explorative and iterative —— > |/O intensive

Combinatorial explosion of datasets —— > Relationships Grow
Exponentially and Limited Scalability

Irregular Structure —— > Challenging Graph Partitioning and
Limited Parallelism

f /
/O

s

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 114 / 206

PageRank

PageHanh

PageRank works by counting the number and quality of edges (links) to a node (web page) to
determine a rough estimate of how important the node is

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 115 / 206

MapReduce for PageRank

@ Multiple MapReduce iterations G' °
@ Each Page Rank Iteration: “

U Input: GLG
- (idy, [PR{(1), outy,, out,,, ...]),

- (id,, [PR(2), out,,, out,,, ...]), V, [0.25, Vs Vs, V,]

nput: V2, [0-25, V3, V)]

_ V,, [0.25, V,]
U Output: One V,,[0.25, V,, V]
- (idy, [PRy4(1), outy,, outy,, ...1), MapReduce

- (id,, [PR,,(2), out,,, out,,, ...]), ~ 'teration

Vy, [0.37,V,, V3, V,]
Output: y_ [0.08,V,, V,]

@ |terate until convergence > xa, {ggg,xllv]
another MapReduce instance RO

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 116 / 206

MapReduce for PageRank

® Map
U Input: (v, [0.25,V,, V,, V,]); O‘G
(V,, [0.25, V3, V,)); (V3, [0.25, V,) M
(V,,[0.25, V,, V) '
O Output: (v,, 0.25/3), (V,, 0.25/3), (V,, 0.25/3), ° a

...... , (V,, 0.25/2), (V, 0.25/2);
(Vy, [Vy, V3, V1), (Vy, [V, VL), (Vs, [V4]), (Vg [V, Vs])

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 117 / 206

MapReduce for PageRank

® Map
Q Input: (v, [0.25,V,, Vs, V,]); G‘e
(V,, [0.25, Vs, V,]); (Vs, 0.25, V,)); M
(V,,[0.25, V,, V3]) .
O Output: (v,, 0.25/3), (V,, 0.25/3), (V,, 0.25/3), 0 °

...... , (V,, 0.25/2), (V,, 0.25/2);
(Vy, [V, Vs, Vi), (Vy, [V, Vi), (Vs, [V4]), (Vg [V4, Vs])

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 118 / 206

MapReduce for PageRank

® Map < 2
Q Input: (v, [0.25,V,, Vs, V,]); °‘°
(V3 [0.25, V3, V,]); (V3, [0.25, V,]); "‘
(v,,[0.25, V,, V.]) .
QO Output: (v,, 0.25/3), (V5, 0.25/3), (V,, 0.25/3), °
...... , (V,, 0.25/2), (V3, 0.25/2);
(V1, [V, V3, V4l), (Vg [V3, V4]), (V3, [V4]), (Vy, [Vy, V3)
@ Shuffle

QOutput: (v,, 0.25/1), (V,, 0.25/2), (V,, [V,, Vs, V,1); e
(V,,0.25/3), (V,, 0.25/2), (V,, [V4, V3])

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 119 / 206

MapReduce for PageRank

@ Map
Q Input: (v,, [0.25,V,, V,, V,]); O‘G
(V3, [0.25, V3, V,]); (Vs, [0.25, V,4]); v‘
(V,,[0.25, V,, V3]) .
U Output: (v,, 0.25/3), (V,, 0.25/3), (V,, 0.25/3), ° 0
...... , (Vy, 0.25/2), (V3, 0.25/2);
(Vy, [Vy, V3, Vi), (Vy, [V3, Vi]), V3, [V4]), (Vy, [Vy, V3])
@ Shuffle

QoOutput: (v,, 0.25/1), (V,, 0.25/2), (Vy, [V,, Vs, V,1); cee ;
(V,, 0.25/3), (V,, 0.25/2), (V,, [V,, V,])
@ Reduce
U Output: (v,, [0.37,V,, V5, V,1); (V,, [0.08, Vs, V,]); (Vs, [0.33, V,]);
(V4,[0.20, Vi, V3])

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 120 / 206

MapReduce for lterative Operations

MapReduce is not optimized for iterative operations

Iterations
I CPU1 I I CPU1 I I CPU1 I
CPU2 CPU2 CPU2

Disk Penalty
Startup Penalty
Disk Penalty
Startup Penalty
Disk Penalty

©
c
]
a
o
5
5
vt

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 121 / 206

Hadoop for Big Graphs?!

@ MapReduce does not directly support itera-
tive algorithms.

@ Invariant graph-topology-data re-loaded and
re-processed at each iteration —— > wasting
[/O, network bandwidth, and CPU

@ Materializations of intermediate results at
every MapReduce iteration harm perfor-
mance

@ Extra MapReduce job on each iteration for
detecting if a fixpoint has been reached

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 122 / 206

An Overview of Big Graph Processing Systems

Graph Processing Platforms

Pregel Family GraphLab Family Other Systems

— Pregel GraphLab —— GraphX
— Giraph PowerGraph —— Trinity
— Giraphe+ (Conteained) " Contalied)
— Mizan L— Signal/Collect
— GPS

— Pregelix

— Pregel+

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 123 / 206

Bulk Synchronous Parallel (BSP) Programming Model?’

Compute Communicate

.
*
.
. ar=ma

Y, :.: :.: .

. B, ot
"
[
. — — — —

=11 >

! —

27, G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 1990

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 124 / 206

Vertex View

¢ Think Like a Vertex

\ * Receive Messages

e Update States

* Send Messages

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 125 / 206

Vertex-centric Programming

T

MessageDatal ———

/

M geData2

VertexID

MyFunc(vertex)
{ // modify neighborhood }

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 126 / 206

Google Pregel?®

Pregel

oogle

The first BSP-based implementation for graph processing

Communication through message passing (usually sent along the out-
going edges from each vertex) + Shared-Nothing
Vertex-centric computation, each vertex:
o Receives messages sent in the previous superstep
Executes the same user-defined function
Modifies its value
If active, sends messages to other vertices (next superstep)
Votes to halt if it has no further work to do —— > becomes inactive

Terminate when all vertices are inactive and no messages in transmit
Advantages:

o No locks —— > message-based communication

o No semaphores —— > global synchronization

o lteration isolation —— > massively parallelizable
*G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.

Czajkowski. Pregel: a system for large-scale graph processing. SIGMOD, 2010.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 127 / 206

Pregel

Input

¥
|__|I||II

TIpnne
R
¥

Output

PREGEL Computation Model

Computation

Communication

Superstep
Synchronization

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

Votes to Halt

Inactive

Message Received

State Machine for a Vertex in PREGEL

128 / 206

Apache Giraph??

Google MapReduce Google Pregel
.“" ‘..‘.
ST INE
TR0 3
e 'A:‘
0 A
o= 2 -0
a8 <N a?®
L1~ (LN
A P A, C H E
GIRAPH

Phttps://giraph.apache.org/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 129 / 206

https://giraph.apache.org/

Giraph's Timeline

Apache
Google Top Level 1.1
Pregel Project release
(2010) (2012) (2014)
BN
0 ey
v o aY
Donated v [San- 52 1.0
to ASF by A ¢ H £ release
Yahoo! G IR AP H (2013) .
(2017) Supported by:
Facebook
Yahoo!
LinkedIn

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 130 / 206

Giraph Execution Phases

loading Phase Comput Phase Offloading Phase

Workers call compute{) on the

active vertices and collect
messages

Vertices are loaded into
Giraph through an
inputFormat be processed

All vertices haired and no

Workers compute
«collect statistics,
and wait at the

synchronisation barrier

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

Vertices are ofiloaded HDFS
More vertices and messages to through an OutputFormat

131 / 206

Giraph Master-Slave System Architecture

<

S. Sakr (RTSI'16)

In putS’pIit 0

//_f
g \\/orker 0 /\

\

\oooHeoo]oéoHooo\

InputSplit 1

4 Worker 1 K

Big Data 2.0 Processing Systems

VertexRange 2 VertexRange 1 VertexRange 0

VertexRange 3

|

Vertex FIlange 01
VertexRange 2.3

132 / 206

BSP Example - Max Value

°
o o
o

Superstep 1 Superstep 2 Superstep 3 Superstep 4

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 133 / 206

BSP Example - PageRank

PR,y (u) = 3 TlY)

o"@ = IR
“‘ @ PR(u): Page Rank of node u
(=)

@ F,: Out-neighbors of node u

@ B,: In-neighbors of node u

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 134 / 206

BSP Example - PageRank

°'° PR,.,(u) = Z m

veB, |Fv|

Oy
PR(V,) | 0.25
PR(V,) | 0.25
PR(V;) | 0.25
PR(V,) | 0.25

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 135 / 206

BSP Example - PageRank

S. Sakr (RTSI'16)

K=0 K=1
PR(V,) | 0.25 ?
PR(V,) | 0.25
PR(V,) | 0.25
PR(V,) | 0.25

Big Data 2.0 Processing Systems

136 / 206

BSP Example - PageRank

PR, (v)

Oy PR = 2 g

()—)
PR(V,) | 0.25 ?
PR(V,) | 0.25
PR(V;) | 0.25
PR(V,) | 0.25

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 137 / 206

BSP Example - PageRank

0.25

O =g
=T
e

S. Sakr (RTSI'16)

PR .. (u) = D —5—

K=0 K=1
PR(V,) | 0.25 0.37
PR(V,) | 0.25
PR(V,) | 0.25
PR(V,) | 0.25

Big Data 2.0 Processing Systems

138 / 206

BSP Example - PageRank

D
\ >
S5

S. Sakr (RTSI'16)

PR, (u) =).

K=0 K=1
PR(V,) | 0.25 0.37
PR(V,) | 0.25 0.08
PR(V,) | 0.25 0.33
PR(V,) | 0.25 0.20

Big Data 2.0 Processing Systems

ve B,

PR, (V)

F

v ‘

139 / 206

BSP Example - PageRank

0‘ R, - 3 PRl
oS

K=0 K=1 K=2
PR(V,) | 0.25 0.37 0.43
PR(V,) | 0.25 0.08 0.12
PR(V,) | 0.25 0.33 0.27
PR(V,) | 0.25 0.20 0.16

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 140 / 206

BSP Example - PageRank

S. Sakr (RTSI'16)

PR, (U) = X

veB,

Iterative Batch Processing

PR, (v)
F

K=0 K=1 K=2 K=3
PR(V,) | 0.25 0.37 0.43 0.35
PR(V,) | 0.25 0.08 0.12 0.14
PR(V;) | 0.25 0.33 0.27 0.29
PR(V,) | 0.25 0.20 0.16 0.20

Big Data 2.0 Processing Systems

141 / 206

BSP Example - PageRank

S. Sakr (RTSI'16)

PR (U) = X

Iterative Batch Processing

veB,

PR, (V)

Fl

K=0 K=1 K=2 K=3 K=4
PR(V,) | 0.25 0.37 0.43 0.35 0.39
PR(V,) | 0.25 0.08 0.12 0.14 0.11
PR(V;) | 0.25 0.33 0.27 0.29 0.29
PR(V,) | 0.25 0.20 0.16 0.20 0.19

Big Data 2.0 Processing Systems

142 / 206

BSP Example - PageRank

PR 1 (U) = X

veB,

PR, (v)

F

Iterative Batch Processing

K=0 K=1 K=2 K=3 K=4 K=5
PR(V,) | 0.25 0.37 0.43 0.35 0.39 0.39
PR(V,) | 0.25 0.08 0.12 0.14 0.11 0.13
PR(V;) | 0.25 0.33 0.27 0.29 0.29 0.28
PR(V,) | 0.25 0.20 0.16 0.20 0.19 0.19

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

143 / 206

BSP Example - PageRank

()
X

(=)

PR, (u) = >,

veB,

PR, (V)

K=0 K=1 K=2 K=3 K=4
PR(V,) | 0.25 0.37 0.43 0.35 0.39 0.39 0.38
PR(V,) | 0.25 0.08 0.12 0.14 0.11 0.13 0.13
PR(V;) | 0.25 0.33 0.27 0.29 0.29 0.28 0.28
PR(V,) | 0.25 0.20 0.16 0.20 0.19 0.19 0.19

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

144 / 206

BSP Communication - Pregel Execution

[terations

LN
7

DATA | DATA

o o o
g g g
a a a
g g g g
a a a o
a =) o o
fa] a fa] a
v Barrier M Barrier |u Barrier M

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 145 / 206

MapReduce VS Pregel

******************* Map Reduce

Input Files

| REDUCE | | REDUCE |

!

output fies D D

!
O

S. Sakr (RTSI'16)

Big Data 2.0 Processing Systems

146 / 206

MapReduce VS Pregel

MapReduce

@ Requires passing of entire
graph topology from one
iteration to the next

@ Intermediate results after
every iteration is stored at
disk and then read again
from the disk

@ Programmer needs to write
a driver program to support
iterations; another
MapReduce program to
check for fixpoint

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

PREGEL

@ Each node sends its state only

to its neighbors. Graph
topology information is not [e

. . &
passed across iterations

Main memory based [ee
<S5
Usage of supersteps and { oo

master-client architecture
makes programming easy

147 / 206

Limitations of Pregel

@ In Bulk Synchronous Parallel (BSP) model, performance is
limited by the slowest machine

O Real-world graphs have power-law degree distribution,
which may lead to a few highly-loaded servers

@ Does not utilize the already computed partial results from the
same iteration

U Several machine learning algorithms (e.g., belief
propagation, expectation maximization, stochastic
optimization) have higher accuracy and efficiency with
asynchronous updates

L Potential Optimizations

@ Partition the graph — (1) balance server workloads
(2) minimize communication across servers

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 148 / 206

Mizan30

@ An open-source project developed in C++ by KAUST, in collaboration
with IBM Research.

@ Focuses on efficient load balancing across workers in a cluster and
minimizing the variations across workers by identifying which vertices
to migrate and where to migrate them to.

@ Mizan (Arabic): a double-pan scale

V"

307, Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
a system for dynamic load balancing in large-scale graph processing. EuroSys, 2013.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 149 / 206

Mizan

@ Monitoring:
O Outgoing Messages
U Incoming Messages
O Response Time

@ Migration Planning:

Identify the source of imbalance

Select the migration objective

Pair over-utilized workers with under-utilized ones
Select vertices to migrate

Migrate vertices

oooodo

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 150 / 206

Mizan: Dynamic Re-Partition

@ Dynamic Load Balancing across supersteps in PREGEL

Worker 1 |e— Worker 1 |me—
Worker 2 |===== Worker 2 [
Worker n | me s Worker n |

== Computation

W Communication

@ Adaptive re-partitioning
@ Agnostic to the graph structure

@ Requires no apriori knowledge of algorithm behavior

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 151 / 206

Mizan

Graph algorithm API (e.g., Pregel)

Mizan Optimizer

Mizan-ol Mizan-y
£ y 4 COMPUTING
Z Z Z INFRASTRUCTURE
N NS
Min-cut partitioning of input graph Random partitioning of input
Point-to-point message passing Ring overlay message passing

Good for power-law graphs Good for non-power-law graphs

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 152 / 206

Challenges of Mizan

® Monitoring:
O Outgoing Messages
U Incoming Messages

'Sl - Does workload in the current iteration an

indication of workload in the next iteration?

Overhead due to migration?

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

153 / 206

GraphLab??

@ GraphLab is an open-source large scale graph processing project, im-
plemented in C++, which started at CMU and is currently supported
by Dato Inc3!.

@ Unlike Pregel, GraphLab relies on the shared memory abstraction and
the GAS (Gather, Apply, Scatter) processing model which is sim-
ilar to but also fundamentally different from the BSP model that is
employed by Pregel.

@ The GraphLab abstraction consists of three main parts: the data graph,
the update function, and the sync operation.

GraphLab
3https://dato.com/

32Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A Framework for Machine Learning in the Cloud. PVLDB, 2012.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 154 / 206

https://dato.com/

GAS Model

e N [N [N
Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined: User Defined: User Defined:

b Gather(@Q—@) > 3 » Apply(@), 2) > @ b Scatter(0~@) > —
PI @I, 2L, |

|

Parallel Update Edge Data &
Sum I I Iez Activate Neighbors3
J

- \C _J

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 155 / 206

The GraphlLab Framework

Graph Based Update Functions
Data Representation User Computation

Scheduler Consistency Model

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 156 / 206

GraphlLab: Ghost Vertices

Ghost vertices maintain adjacency structure and replicate remote data

O

“ghost” vertices

C}

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 157 / 206

GraphLab Update Function

An update function is a user defined program which when
applied to a vertex transforms the data in the scopeof the vertex

Update function applied (asynchronously)

in parallel until convergence

Many schedulers available to prioritize computation

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 158 / 206

PREGEL VS GraphlLab

PREGEL GraphlLab
@ Synchronous System @ Asynchronous System
{ e+ @ No concurrency control, @ Consistency of updates
N no worry of consistency harder (edge, vertex,
sequential)
‘oo ® Easy fault-tolerance, check @ Fault-tolerance harder
o point at each barrier (need a snapshot with

consistency)

@ Asynchronous model can o o

@ Bad when waiting for make faster progress ~~
stragglers or load-
imbalance @ Can load balance in -
scheduling to deal with '~
load skew

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 159 / 206

Difficulties with Power Law Graphs

W

AN

103999
%NNN

1111

Synchronous Execution

Sends many messages (Pregel) prone to stragglers (Pregel)

Asynchronous Execution

requires heavy locking (GraphLab) ~ Touches a large fraction of Edge meta-data

graph (GraphLab) too large for single machine

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 160 / 206

PowerGraph33

@ A member of the GraphLab family of systems that have been introduced
to avoid the imbalanced workload caused by high degree vertices in
power-law graphs.

@ PowerGraph introduced a partitioning scheme that cuts the vertex set
in a way such that the edges of a high-degree vertex are handled by
multiple workers.

@ As a tradeoff, vertices are replicated across workers, and communication
among workers are required to guarantee that the vertex value on each
replica remains consistent.

33J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. In OSDI, 2012.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 161 / 206

PowerGraph: Motivation

10

10 .
More than 108 vertices
o 108(3/ have one neighbor.
£ High-Degree
L 10° | g . g
ks Vertices
3 10* |
&
=
10° |
AltaVista WebGraph
1.4B Vertices, 6.6B Edges
0

10 :
10° 10°

Degree

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 162 / 206

The PowerGraph Framework

Split High-Degree vertices

Program
For This

«? o

o Lo
N T

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

Run on This

Machine 1 Machine 2

163 / 206

Vertex-Cut instead of Edge-Cut

=

Machine 1, |Machine 2

Vertex Cut (GraphLab)

@ Power-Law graphs have good vertex cuts. [Albert et al., Nature ‘00]

@ Communication is linear in the number of machines
each vertex spans

@ A vertex-cut minimizes machines each vertex spans
@ Edges are evenly distributed over machines = improved work
balance

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 164 / 206

Edge-Cut

@ Used by Pregel and GraphLab abstractions

@ Evenly assign vertices to machines

.~ -
Edge cut = [~
- I~
G =
ﬁ. =
d-
@
4 vertices 5 wertices

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 165 / 206

Vertex-Cut

@ Used by PowerGraph abstraction

@ Evenly assign edges to machines

wverbex cut

_ 4 adges j _ 4 adges __/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 166 / 206

The PowerGraph Framework

Machine 1

/ Master

B ,
Apply

Gather

Machine 2

Scatter ‘\
Mirror

Machine 3

Mirror :

Machine 4

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

167 / 206

Minimizing Communication in PowerGraph

Communication is linear in
the number of machines
each vertex spans

A vertex-cut minimizes
machines each vertex spans

Percolation theory suggests that power law
graphs have good vertex cuts. [Albert et al. 2000]

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 168 / 206

GraphX3*

@ A distributed graph engine built on top of Spark.

@ GraphX extends Sparks Resilient Distributed Dataset (RDD) abstrac-
tion to introduce the Resilient Distributed Graph (RDG), which
associates records with vertices and edges in a graph and provides a
collection of expressive computational primitives.

@ The GraphX RDG leverages advances in distributed graph representa-
tion and exploits the graph structure to minimize communication and
storage overhead.

@ GraphX relies on a flexible vertex cut partitioning to encode graphs as
horizontally partitioned collections.

). E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph Processing in a Distributed Dataflow Framework. OSDI, 2014.
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 169 / 206

GraphX

@ One system for the entire graph pipeline. Unlike other graph processing
systems, the GraphX API enables the composition of graphs.

ap O uctio l)41lsllicz 11101 Post-Processing

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

@ Tables and graphs are views of the same physical data.

@ Each view has its own operators that exploit the semantics of the view
to achieve efficient execution.

W Graph View

Representation

Table View

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 170 / 206

GraphX Representation

type VertexId = Long

val vertices: RDD[(VertexId, String)] =
sc.parallelize(List(
(1L, “Alice”),
(2L, “Bob”),
(3L, “Charlie”)))

class Edge[ED](
val srcId: VertexId,
val dstId: VertexId,
val attr: ED)

val edges: RDD[Edge[String]] =
sc.parallelize(List(
Edge(1L, 2L, “coworker”),
Edge(2L, 3L, “friend”)))

val graph = Graph(vertices, edges)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

Graph

P | Aice |
(]

2

3

171 / 206

GraphX Representation

Property Graph Vertex Table

Id Property (V)
(rxin, student)

(jgonzal, postdoc)

(franklin, professor)

N U W

(istoica, professcr)

Edge Table

Srcld Dstld Property (E)

3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7 Pl

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 172 / 206

Distributed Graphs as Tables (RDDs)

Vertex Routing Edge

Table Table Table
(RDD) (RDD) oro
%\ ‘ QE] 3 o = e
< :;: (B)YaHC)
@/’/ (cya(p)
T am) | A6

~— = .

2= Nee6
é GE }(E (D)
Part. 2 e//ﬁ (e ra{(F)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 173 / 206

GraphX Graph Operations

Basic information (numEdges, numVertices, inDegrees, ...)

e Views (vertices, edges, triplets)

Caching (persist, cache, ...)

e Transformation (mapVertices, mapEdges, ...)

Structure modification (reverse, subgraph, ...)

e Neighbour aggregation (collectNeighbours, aggregations, ...)

Graph builders (various |/O operations)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 174 / 206

GraphX Graph Operations

class Graph[VD, ED] {
// Table Views --------------oommuuu-
def vertices: RDD[(VertexId, VD)]
def edges: RDD[Edge[ED]]
def triplets: RDD[EdgeTriplet[VD, ED]]
// Transformations -------=-------cmmo oo
def mapVertices[VD2](f: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2](f: Edge[ED] => ED2): Graph[VD2, ED]
def reverse: Graph[VD, ED]
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean,
vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
// Joins =--eemem e
def outerJoinVertices[U, VD2]
(tbl: RDD[(VertexId, U)])
(f: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]
// Computation ----------ccmmmcmmm e eeeeee
def mapReduceTriplets[A](
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A): RDD[(VertexId, A)]

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 175 / 206

GraphX Triplet View

class Graph[VD, ED] {

def triplets: RDD[EdgeTriplet[VD, ED]]

}

class EdgeTriplet[VD, ED](
val srcld: VertexId, val dstId: VertexId, val attr: ED,

val srcAttr: VD, val dstAttr: VD)

Graph

-

S. Sakr (RTSI'16)

triplets

srcAttr
Alice
Bob

RDD
dstAttr

coworker

friend

Bob
Charlie

Big Data 2.0 Processing Systems

176 / 206

GraphX Subgraph Transformation

class Graph[VD, ED] {
def subgraph(epred: EdgeTriplet[VD, ED] => Boolean,
vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
}

graph.subgraph(epred = (edge) => edge.attr != “relative”)

subgraph

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 177 / 206

GraphX Subgraph Transformation

class Graph[VD, ED] {

def subgraph(epred: EdgeTriplet[VD, ED] => Boolean,
vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

}

graph.subgraph(vpred = (id, name) => name != “Bob™)

subgraph

S. Sakr (RTSI'16)

Graph

Big Data 2.0 Processing Systems

178 / 206

GraphX Enables Joining Tables and Graphs

Tl o X o

User Friend Product Rec. Prod.
Data Graph Graph Rec.

E Tables‘ : Graphs
Product v

Ratings

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 179 / 206

GraphX System Optimization

Specialized Vertex-Cuts Remote
Data-Structures Partitioning Caching / Mirroring
11 | 1]

Message Combiners Active Set Tracking

W@-

S Sakr (RTSI 16) Big Data 2.0 Processing Systems 180 / 206

Gradoop?®

APACHE

BRASE

Graph Analytical Language (GrALa)

Extended Property Graph Model (EPGM)

Apache Flink Operator Implementation

Apache Flink Distributed Operator Execution

Apache HBase Distributed Graph Store

®http://dbs.uni-leipzig.de/en/research/projects/gradoop

S. Sakr (RTSI'16)

HDFS/YARN
Cluster

Big Data 2.0 Processing Systems

181 / 206

http://dbs.uni-leipzig.de/en/research/projects/gradoop

Gradoop: Apache Flink Third-party library

Ba}ch Str?am
I VI

2 21l = <] 3
2llallz|l = oll&|] E
© [~ © = = © o
- o - =
© > @) g ©)
o SN o

DataSet DataStream

Data Storage (e.g. Files, HDFS, S3, JDBC, Kafka, ...)

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

182 / 206

Gradoop Operators

Operators

Algorithms

Unary | | Binary

Graph Forecasting

Gelly Library

| | Logical Graph |

Distinct
Sort
Top

Apply *

Graph Collection

* auxiliary
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 183 / 206

Part VII

Big Machine Learning Libraries

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 184 / 206

Mahout3°

@ Mahout is a Java library that implements Machine Learning techniques
(e.g. classification, clustering, recommendation) on top of the Hadoop
framework.

o Example use cases:
o Recommendation: Takes users’ behavior and tries to find items users
might like.

o Clustering: takes e.g. text documents and groups them into groups of
topically related documents.

O.

*http://mahout .apache.org/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 185 / 206

http://mahout.apache.org/

SystemML3’

@ SystemML provides declarative large-scale machine learning (ML) that aims at flexi-
ble specification of ML algorithms and automatic generation of hybrid runtime plans
ranging from single node, in-memory computations, to distributed computations
such as Apache Hadoop MapReduce and Apache Spark.

DML Scripts DML (Declarative Machine

Learning Language)

]

In-Memory Single Node Hadoop or Spark Cluster
(scale-up) (scale-out)

ChErEEE Spoﬁ:Z
R

2 ila

o

3http://incubator.apache.org/projects/systemml . html
Big Data 2.0 Processing Systems 186 / 206

http://incubator.apache.org/projects/systemml.html

Google Cloud Machine Learning3®

@ Google Cloud Machine Learning is a managed platform that enables its
users to easily build machine learning models, that work on any type
of data, of any size.

') Google Cloud Platform

Compute Storage Big Data/Analysis Services
1 r 1
A
© @
App Engine Compute Engine Cloud Storage Cloud Datastore Cloud SQL BigQuery Cloud Endpaints

Bnttps://cloud.google.com/ml/
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 187 / 206

https://cloud.google.com/ml/

Other Big Machine Learning Tools

@ Microsoft Azure Machine Learning3®
e BigML*
e Hunk*!

e RHadoop*?

¥https://azure.microsoft.com/en-us/services/machine-learning/
“https://bigml.com/

“http://www.splunk. com/en_us/products/hunk.html
“https://github.com/RevolutionAnalytics/RHadoop/wiki

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 188 / 206

https://azure.microsoft.com/en-us/services/machine-learning/
https://bigml.com/
http://www.splunk.com/en_us/products/hunk.html
https://github.com/RevolutionAnalytics/RHadoop/wiki

Part VIII

Open Challenges

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 189 / 206

Open Challenge: Pipelining Various Big Data Jobs

@ In practice, one of the possible scenarios is that users need to execute
a computation that combines various analytics jobs.

@ Existing systems do not address the challenges of data construction,
transformation and post processing which are often just as problematic
as the subsequent computation (computation pipelines)

@ New trend of integrated systems: Spark and Flink.

e Emerging pipelining systems: Apache Tez** and Apache MRQL**.

Bhttps://tez.apache.org/
*“https://mrql.incubator.apache.org/

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 190 / 206

https://tez.apache.org/
https://mrql.incubator.apache.org/

Open Challenge: Pipelining Various Big Data Jobs

Creat graph Analyz graph

g‘i‘-z"m

Result

Load Clean

s %,

Load Clean

AP ACHE
HBRASE @[Transform

Big Data 2.0 Processing Systems

S. Sakr (RTSI'16) 191 / 206

Open Challenge: Data Analytics across Multiple Clusters

@ As data are increasingly distributed across different departments, clusters and
organizations which may hold different features for the same entities due to
the different products they have, there are increasing requirements to apply
data analytics across clusters in order to learn comprehensive pattern and
knowledge from end users.

@ Current big data processing frameworks not natively designed for processing
datasets distributed on infrastructures with heterogeneous connectivity.

Rack A %f\\\ E a2b2
a,b,b 0.} a,1b2 alb1
d c2d,1 a2 b2

o o i i 5 e i _— i o s 5 ol e i)) i 5 i e o 1
[l |
! I
a,ab, a2bl :
c,cd YE] cld2
Rack B ! il
aZbI c,dd2
gd d

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 192 / 206

Open Challenge: Lack of Declarative Interfaces

@ In the early days of the Hadoop framework, the lack of declarative
languages to express the big data processing tasks has limited its prac-
ticality and the wide acceptance and the usage of the framework.

@ Several systems (e.g., Pig, Hive, Impala) have been designed to provide
high-level languages for expressing big data tasks on top of Hadoop.

o Currently, the systems/stacks of large scale graph and stream process-
ing platforms are suffering from the same challenge.

o High level language abstractions for expressing big data process-
ing jobs and enable the underlying systems/stack to perform
automatic optimization are crucially required.

“Describing” —— Declarative ——— Procedural+———“Doing”

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 193 / 206

Open Challenge: Benchmarking Challenges®

@ Designing a good benchmark is a challenging task due to the many
aspects that should be considered which can influence the adoption
and the usage scenarios of the benchmark.

o Variety on algorithms, systems, big dataets characteristics and appli-
cation domains.

@ There is not enough standard benchmarks that can be effectively em-
ployed in this domain.

%50. Batarfi, R. Elshawi, A. Fayoumi, R. Nouri, S. Beheshti, A. Barnawi, S. Sakr ,
Large Scale Graph Processing Systems: Survey and An Experimental Evaluation. Cluster

Computing journal, 2015
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 194 / 206

Platform-Independent Analytics

@ In general, more alternatives usually mean harder decisions for choice.

@ Porting the data and the data analytics jobs between different systems is a tedious,
time consuming and costly task.

@ Musketeer*® and Rheem*” systems proposed a new direction to map the front-end
of the big data jobs (e.g., Hive, SparkSQL) to a broad range of back-end execution
engines (e.g., Hadoop, Spark, PowerGraph).

@ More work is still required to tackle the challenge of providing a platform indepen-
dence and multi-platform task execution platforms.

Intermediate
__fepresentaion
[ric
—
—

[GasDsL_puu

— D

Exs -

S Graphchi |

" Dataflow-DAG

) Gog et al. Musketeer: all for one, one for all in data processing systems. EuroSys, 2015.
47D, Agrawal et al. Rheem: Enabling Multi-Platform Task Execution. SIGMOD, 2016.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 195 / 206

Part IX

Conclusions

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 196 / 206

Conclusions

Big Data is the New Oil
and
Big Data Processing Systems is the Machinery

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 197 / 206

Conclusions

48

o Big Data has a growing market size

“8Wikibon Taming Big Data
S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 198 / 206

Conclusions

@ Scalable Big Data processing involves various unique challenges

@ In the last few years, several distributed data processing systems have
been introduced with various design decisions

@ Open challenges include declarative interfaces, pipelining and integrat-
ing various big data systems, and benchmarking

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 199 / 206

Conclusions

The Datafloq Open Source Landscape 2.0

Data Analysis & Platforms Databases / Data warehousing € GlobalsDB |(I; Memgry
ompu

3
ms m bigdata
12;—7 HPCCSystTDrem INFOBR gGHT %Cassandra 4Store @ %QL Gilym
" e . ite
. Spark® | InfiRiDB riak ’3 Infinisc I hazelcast

. RethmkDB o” TERRAGOTTA .o~
Ee-22 APACHE SAMOA \ HVPtRlABLt MOHODB DI’IZZ|e
HD 4 DRILL Jupiy~y) Qﬂ oracie jonars@L N\ NMemory
IKANGW | ruumirocssons ity o SERKELEY 0B y L' monetdp GoRA,
i Big Datfa search || Multivalue database Programming
Business InTeIIloenc:em‘5 qu I:Ilnlng orcn%e ‘ iy QM
oen el rapiominer ...
talen | (RS s, D e
' spagobi @pentuho [EdDX O BlRT @Iiogaware gPJJJU’ 8 elasticsearch. . ASE INTERNATION 3@[

KeyValue Document Store __RavenD8 Gra hdaTobqses Operational
B eveldh | I Coucupase M peration

nowcne 11/, 4northgate

& redis Chordless e || [N RevtorDs BB EE]dJom 1 voLTDB

Tokyo ‘ JasDb :CouchDB Multidimensional

INFoO 'm'm[fﬁfph Social 1S
GR | D .

SCAULIEN Obiject databases Apache Kafka | | 2ScilDE
. L oD - b B an
databaso. @‘ZOPE meb|ec1 2 : Flookoe ToX BrighstarnsJ TNINKUp Corena) | TERTER

$¥ Farcom | "~ Magma e () =i=a000] [Multimodel XML Databses Grid Solutions

oo fi5 OPERSEVERE sangons | epistcb 53 Qizx

‘SpenLDAp MIQLECT

wemspoee - @ | &, /0o §8 ND3tabas: | GEEIRY LIQUBASE | .poy

STORAGE AND BEYOND.

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 200 / 206

Conclusions

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 201 / 206

Our Big Data 1.0 Book

Sherif Sakr and Mohamed Gaber. " Large Scale and Big Data: Processing

and Management”, CRC Press, 2014

—

Large S '
and Big Data

Processing and Management

Edited by
#Sherif Sakr and Mohamed

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems

202 / 206

Our Big Data 2.0 Book

Sherif Sakr. " Big Data 2.0 Processing Systems”, Springer, 2016

SPRINGER BRIEFS IN COMPUTER SCIENCE

Sherif Sakr

Big Data 2.0
Processing

Systems
A Survey

@ Springer

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 203 / 206

Our Giraph Book

Sherif Sakr et al. " Large Scale Graph Processing Using Apache Giraph”,
Springer, 2016

Sherif Sakr

Faisal Moeen Orakzai

Ibrahim Abdelaziz
[Zuhair Khayyat

Large-Scale
Graph Processing

Using Apache
Giraph

@ Springer

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 204 / 206

Our Handbook on Big Data

Albert Zomaya and Sherif Sakr. " Handbook of Big Data Technologies”,
Springer, 2017

@ Springer

}%_ijing Soon!

S. Sakr (RTSI'16) Big Data 2.0 Processing Systems 205 / 206

The End

	Big Data Phenomena
	Big Data 1.0 System: The Hadoop Decade
	Big Data 2.0 Processing Systems: General-Purpose Processing Engines
	Big Data 2.0 Processing Systems: SQL-On-Hadoop
	Big Data 2.0 Processing Systems: Big Stream Processing Systems
	Big Data 2.0 Processing Systems: Big Graph Processing Systems
	Big Machine Learning Libraries
	Open Challenges
	Conclusions

