
Big Data 2.0 Processing Systems:
Technologies, Challenges and Opportunities

Sherif Sakr

2nd International Forum on Research and Technologies for Society and Industry

(RTSI 2016)
Bologna, Italy

7-9 September 2016

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 1 / 206

Today’s Agenda

Big Data Phenomena

Big Data 1.0 Systems
Hadoop

Hadoop Extensions

Big Data 2.0 Systems
General-Purpose Systems

Big SQL Systems

Big Stream Processing Systems

Big Graph Processing Systems

Open Challenges

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 2 / 206

Part I

Big Data Phenomena

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 3 / 206

Big Data

Data is key resource in the modern world.

According to IBM, we are currently creating 2.5 quintillion bytes of
data everyday.

IDC predicts that the world wide volume of data will reach 40 zettabytes
by 2020.

The radical expansion and integration of computation, networking, dig-
ital devices and data storage has provided a robust platform for the
explosion in big data.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 4 / 206

On the Verge of A Disruptive Century: Breakthroughs
On the Verge of A Disruptive Century:

Breakthroughs

Faster
Communication

Smaller, Faster,
Cheaper Sensors

Gene
Sequencing and
Biotechnology

Ubiquitous
Computing

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 5 / 206

Big Data Applications are Everywhere

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 6 / 206

Big Data

Data generation and consumption is becoming a main part of people’s
daily life especially with the pervasive availability and usage of Internet
technology and applications.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 7 / 206

Big Data

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 8 / 206

Big Data: What Happens in the Internet in a Minute?

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 9 / 206

Your Smart Phone is now Very smart

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 10 / 206

Big Data: Internet of Things

We are witnessing radical expansion and integration of digital devices,
networking, data storage and computation systems.
We now have smart TVs that are able to collect and process data, we
have smart watches, smart fridges, and smart alarms.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 11 / 206

Big Data: Activity Data

Simple activities like listening to music or reading a book are now
generating data.

Digital music players and eBooks collect data on our activities.

Your smart phone collects data on how you use it and your web
browser collects information on what you are searching for.

Your credit card company collects data on where you shop and your
shop collects data on what you buy.

It is hard to imagine any activity that does not generate data.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 12 / 206

Big Data

The cost of sequencing one human genome has fallen from $100
million in 2001 to $1K in 2015

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 13 / 206

New Types of Data

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 14 / 206

The Data Structure Evolution Over the Years

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 15 / 206

Shift in Application Requirements

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 16 / 206

Big Data (3V)

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 17 / 206

Big Data (5V)

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 18 / 206

Big Data

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 19 / 206

Big Data Definition

McKinsey global report described big data as the next frontier for in-
novation and competition.

The report defined big data as ”Data whose scale, distribution, di-
versity, and/or timeliness require the use of new technical architectures
and analytics to enable insights that unlock the new sources of business
value”

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 20 / 206

Big Data Revolution

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 21 / 206

IBM 5MB Hard Disk ;-)

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 22 / 206

Big Data

Moore’s Law: The information density on silicon integrated circuits
double every 18 to 24 months

Users expect more sophisticated information

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 23 / 206

Fourth Paradigm

Jim Gray, a database pioneer, described the big data phenomena as
the Fourth Paradigm and called for a paradigm shift in the computing
architecture and large scale data processing mechanisms.
The first three paradigms were experimental, theoretical and, more
recently, computational science

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 24 / 206

Computing Clusters

Many racks of computers, thousands of machines per cluster.

Limited bisection bandwidth between racks.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 25 / 206

Data Centers

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 26 / 206

Part II

Big Data 1.0 System: The Hadoop Decade

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 27 / 206

A Little History: Two Seminal contributions

”The Google File System”1

Describes a scalable, distributed, fault-tolerant file system tailored for
data-intensive applications, running on inexpensive commodity hardware,
delivers high aggregate performance

”MapReduce: Simplified Data Processing on Large Clusters”2

Describes a simple programming model and an implementation for pro-
cessing large data sets on computing clusters.

1S. Ghemawat, H. Gobioff, S. Leung. The Google file system. SOSP 2003
2J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

OSDI 2004
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 28 / 206

The Architecture of Google File System

Master manages metadata
Files broken into chunks (typically 64MB)
Chunks are replicated across three machinery for fault-tolerance
Data transfer happens directly between the clients and chunkserves.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 29 / 206

What is MapReduce?

A simple and powerful programming model that enables easy develop-
ment of scalable parallel applications to process vast amounts of data
on large clusters of commodity machines

Hide messy details in distributed programming:
Automatic parallelization
Load balancing
Network and disk transfer optimization
Handling of machine failures

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 30 / 206

MapReduce’s Programming Model

The computation takes a set of key/value pairs input and produces a
set of key/value pairs as output.

The computations are expressed using two functions: Map and Re-
duce.

The Map function takes an input pair and produces a set of interme-
diate key/value pairs.

The MapReduce framework groups together all intermediate values as-
sociated with the same intermediate key I and passes them to the
Reduce function.

The Reduce function receives an intermediate key I with its set of
values and merges them together.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 31 / 206

MapReduce’s Execution Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 32 / 206

MapReduce’s Programming Example

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 33 / 206

Hadoop3: A Star is Born

Hadoop is an open-source software
framework that supports data-intensive
distributed applications and clones the
Google’s MapReduce framework.

It is designed to process very large
amount of unstructured and complex
data.

It is designed to run on a large number
of machines that don’t share any memory
or disks.

It is designed to run on a cluster of ma-
chines which can put together in rela-
tively lower cost and easier maintenance.

3http://hadoop.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 34 / 206

Hadoop = HDFS + MapReduce

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 35 / 206

Zookeeper4

An Open source, High Performance coordination service
for distributed applications

Centralized service for

Configuration Management
Locks and Synchronization for providing
coordination between distributed systems
Naming service (Registry)
Group Membership

4http://zookeeper.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 36 / 206

http://zookeeper.apache.org/

Hadoop’s Success

Big Data 1.0 = Hadoop

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 37 / 206

Hadoop’s Success5

Big Data 1.0 = Hadoop

5https://www.google.com/trends/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 38 / 206

https://www.google.com/trends/

Hadoop’s Enhancments6

The basic architecture of MapReduce/Haddop framework suffered from
some limitations.

Several research efforts that have been conducted in order to deal with
these limitations by providing various enhancements.

Processing Join Operations

Supporting Iterative Processing

Data and Process Sharing

Data Indices

Effective Data Placement

Query Optimization

6S. Sakr, A. Liu, A. Fayoumi. The family of mapreduce and large-scale data
processing systems. ACM Comput. Surv, 2013.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 39 / 206

The Always Dilemma: Does One Size Fit All?!

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 40 / 206

Big Data 2.0 Processing Systems

Big Data 2.0 != Hadoop

Domain-specific, optimized and vertically focused systems

2004 20152004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Google MapReduce

Hadoop

Apache Spark

Apache Flink

Apache Hive Google Pregel

Apache Storm

Apache Giraph

GraphLab

PowerGraph

Cloudera Impala

Apache S4

Apache Samza

Trinity

IBM Big SQL

Facebook Presto

Apache Tajo

GraphX

Apache Phoenix

Apache Tez

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 41 / 206

An Overview of Big 2.0 Processing Systems

Big Data 2.0 Processing Platforms

General Purpose Systems Big SQL Systems Big Graph Processing Systems Big Stream Processing Systems

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 42 / 206

Part III

Big Data 2.0 Processing Systems:

General-Purpose Processing Engines

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 43 / 206

MapReduce for Iterative Operations

MapReduce is not optimized for iterative operations

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 44 / 206

Spark9

Apache Spark is a fast, general engine for large scale data processing
on a computing cluster (new engine for Hadoop)7

Developed initially at UC Berkeley, in 2009, in Scala, and is currently
supported by Databricks8

One of the most active and fastest growing Apache projects

Committers from Cloudera, Yahoo, Databricks, UC Berkeley, Intel,
Groupon and others.

7M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster Computing with Working Sets. HotCloud, 2010.

8https://databricks.com/
9http://spark.apache.org/

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 45 / 206

https://databricks.com/
http://spark.apache.org/

Spark

RDD (Resilient Distributed Dataset), an in-memory data abstrac-
tion, is the fundamental unit of data in Spark

Resilient: if data in memory is lost, it can be recreated

Distributed: stored in memory across the cluster

Dataset: data can come from a file or be created programmatically

Spark programming consists of performing operations (e.g., Map, Fil-
ter) on RDDs

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 46 / 206

Spark VS Hadoop

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 47 / 206

Spark VS Hadoop

Spark takes the concepts and performance of MapReduce to the
next level

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 48 / 206

Spark VS Hadoop

Spark code is much more compact































































 







 










S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 49 / 206

Flow of RDD Operations in Spark



S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 50 / 206

Spark’s Transformations and Actions

Transformations

Actions

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 51 / 206

Spark’s Stack

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 52 / 206

Flink12

Apache Flink10 is a distributed in-memory data processing framework
which represents a exible alternative for the MapReduce framework that
supports both of batch and realtime processing.

Flink has originated from the Stratosphere research project11 that was
started at the Technical University of Berlin in 2009 before joining the
Apache’s incubator in 2014

Instead of the map and reduce abstractions, Flink uses a directed graph
approach that leverages in-memory storage for improving the perfor-
mance of the runtime execution.

10Flink is a German word that means ”quick” or ”nimble”
11http://stratosphere.eu/
12https://flink.apache.org/

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 53 / 206

http://stratosphere.eu/
https://flink.apache.org/

Flink’s Features

True streaming capabilities: Execute everything as streams

Native iterative execution: Allow some cyclic dataflows

Cost-Based Optimizer: for both batch and stream processing

DataSet API for Static Data: Java, Scala, and Python

DataStream API for Unbounded Real-Time Streams: Java and
Scala

Table API for Relational Queries: Scala and Java

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 54 / 206

PACT Programming Model

            

              

       

   

       

             

              

           

            

    

 



          

            



    

28

A PACT consists of exactly one second-order function which is called
Input Contract and an optional Output Contract.

An Input Contract (e.g., Cross, CoGroup, Match) takes a first-order
function with task-specific user code and one or more data sets as
input parameters and invokes its associated first-order function with
independent subsets of its input data in a data-parallel fashion.

An Output Contract (e.g., Same-Key, Super-Key, Unique-Key, Partitioned-
by-Key) is an optional component of a PACT and gives guarantees
about the data that is generated by the assigned user function.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 55 / 206

PACT’s Input Contracts

The Cross contract which operates on multiple inputs and builds a
distributed Cartesian product over its input sets.

The CoGroup contract partitions each of its multiple inputs along the
key. Independent subsets are built by combining equal keys of all inputs.

The Match contract operates on multiple inputs. It matches key/value
pairs from all input data sets with the same key (equivalent to the inner
join operation).

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 56 / 206

PACT’s Output Contracts

The Same-Key contract where each key/value pair that is generated
by the function has the same key as the key/value pair(s) from which it
was generated. This means the function will preserve any partitioning
and order property on the keys.

The Super-Key where each key/value pair that is generated by the
function has a superkey of the key/value pair(s) from which it was
generated. This means the function will preserve a partitioning and
partial order on the keys.

The Unique-Key where each key/value pair that is produced has a
unique key. The key must be unique across all parallel instances. Any
produced data is therefore partitioned and grouped by the key.

The Partitioned-by-Key where key/value pairs are partitioned by key.
This contract has similar implications as the Super-Key contract, specif-
ically that a partitioning by the keys is given, but there is no order inside
the partitions.
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 57 / 206

Flink Examples

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 58 / 206

Flink Examples

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 59 / 206

The Life Cycle of Flink’s ProgramFrom Program to Execution

21

case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {
paths: DataSet[Path] =>
val next = paths
.join(edges)
.where("to")
.equalTo("from") {
(path, edge) =>
Path(path.from, edge.to)

}
.union(paths)
.distinct()

next
}

Optimizer

Type extraction
stack

Task
scheduling

Dataflow
metadata

Pre-flight (Client)

Job Manager
Task Managers

Data
Source
orders.tbl

Filter

Map DataSourc
e

lineitem.tbl

Join
Hybrid Hash

build
HT

probe

hash-part [0] hash-part [0]

GroupRed

sort

forward

Program

Dataflow
Graph

deploy
operators

track
intermediate

results

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 60 / 206

Automatic Program Execution is Important and Needed
Why Program Optimization ?

25
Do you want to hand-optimize that?

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 61 / 206

Automatic Program Execution is Important and Needed

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 62 / 206

Automatic Program Execution is Important and NeededTwo execution plans

DataSource
orders.tbl

Filter

Map DataSource
lineitem.tbl

Join
Hybrid Hash

buildHT probe

broadcast forward

Combine

GroupRed
sort

DataSource
orders.tbl

Filter

Map DataSource
lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

hash-part [0,1]

GroupRed
sort

forwardBest plan
depends on

relative sizes
of input files

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 63 / 206

Flink’s Stack

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 64 / 206

Flink CommunityFlink Community

0

20

40

60

80

100

120

Aug-10 Feb-11 Sep-11 Apr-12 Oct-12 May-13 Nov-13 Jun-14 Dec-14 Jul-15

#unique contributor ids by git commits

In top 5 of Apache's big
data projects after one year
in the Apache Software
Foundation

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 65 / 206

Hadoop VS Spark VS Flink

Hadoop Spark Flink
Year of Origin 2005 2009 2009
Place of Origin MapReduce (Google) UC Berkely TU Berlin

Hadoop (Yahoo)
Programming Model Map and Reduce function RDD PACT

over key/value pairs
Data Storage HDFS HDFS, Cassandra HDFS, S3

and others and others
SQL Support Hive, Impala, Tajo Spark SQL NA

Graph Support NA GraphX Gelly
Streaming Support NA Spark Streaming Flink Streaming

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 66 / 206

Part IV

Big Data 2.0 Processing Systems:

SQL-On-Hadoop

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 67 / 206

Why SQL-On-Hadoop?

Hadoop’s one-input data format (key/value pairs) and two-stage data
flow is extremely rigid. As we have previously discussed, to perform
tasks that have a differen data flow (e.g. joins or n stages) would
require the need to devise inelegant workarounds.

Custom code has to be written for even the most common operations
(e.g. projection and filtering).

In practice, many programmers would prefer to use SQL as a high
level declarative language to express their task while leaving all of the
execution optimization details to the backend engine.

High level language abstractions enable the underlying system to per-
form automatic optimization.

Several studies13 have reported that Hadoop is the wrong choice for
interactive queries on large scale structured data with target response
time of a few seconds or milliseconds.

13A. Pavlo et al. A comparison of approaches to large scale data analysis. SIGMOD
2009

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 68 / 206

Apache Hive15

The first system that has been introduced to support SQL-on-Hadoop
with familiar relational database concepts such as tables and columns14.

Hive has been widely used in many organizations to manage and process
large volumes of data, such as Facebook, eBay, LinkedIn and Yahoo!

It supports an SQL-like declarative language, HiveQL, which represents
a subset of SQL92 and therefore can be easily understood by anyone
who is familiar with SQL.

Hive queries automatically compile into MapReduce jobs that are run
by using Hadoop.

14A. Thusoo et al. Data warehousing and analytics infrastructure at facebook.
SIGMOD 2010

15https://hive.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 69 / 206

https://hive.apache.org/

Hive Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 70 / 206

Example: Joins in Hive

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 71 / 206

Impala17

Open source project, built by Cloudera, to provide a massively parallel
processing SQL query engine that runs natively in Apache Hadoop16.

By using Impala, the user can query data which is stored in Hadoop
Distributed File System (HDFS).

It uses the same metadata, SQL syntax (HiveQL) of Apache Hive.

Impala does not use the Hadoop execution engine to run the queries.
Instead, it relies on its own set of daemons which are installed alongside
the data nodes and are tuned to optimize the local processing to avoid
bottlenecks.

16M. Kornacker et al. Impala: A Modern, Open-Source SQL Engine for Hadoop.
CIDR 2015

17http://impala.io/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 72 / 206

http://impala.io/

Impala Architecture

The Impala daemon (impalad) that accepts queries from client processes and
orchestrates their execution across the cluster.

The Statestore daemon (statestored) is a meta-data publish-subscribe component
which disseminates cluster-wide metadata to all Impala processes.

The Catalog daemon (catalogd) serves as a catalog and metadata access reposi-
tory and is responsible for broadcasting any changes to the system catalog as well.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 73 / 206

IBM Big SQL18

The SQL interface for the IBM big data processing platform, InfoSphere
BigInsights.

Big SQL relies on a built-in query optimizer that rewrites the input
query as a local job to help minimize latencies by using Hadoop dynamic
scheduling mechanisms.

The query optimizer also takes care of traditional query optimization
such as optimal order, in which tables are accessed in the order where
the most efficient join strategy is implemented for the query.

It uses a massively parallel processing SQL engine that is deployed
directly on the physical Hadoop Distributed File System (HDFS).

18http://www-01.ibm.com/software/data/infosphere/hadoop/big-sql.html
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 74 / 206

http://www-01.ibm.com/software/data/infosphere/hadoop/big-sql.html

Big SQL Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 75 / 206

Presto19

Open source distributed SQL query engine, built by Facebook, for run-
ning interactive analytic queries against large scale structured data
sources of sizes of gigabytes up to petabytes.

Presto allows querying data where it lives, including Hive, NoSQL
databases (e.g., Cassandra, HBase), relational databases or even pro-
prietary data stores.

A single Presto query can combine data from multiple sources.

Presto has been recently adopted by big companies and application
such as Netflix and Airbnb.

19http://prestodb.io/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 76 / 206

http://prestodb.io/

Presto’s Timeline

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 77 / 206

Presto Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 78 / 206

Presto Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 79 / 206

Spark SQL20

An alternative interface for Spark that integrates relational processing
with Spark’s functional programming API.

SparkSQL bridges the gap between the two models by providing a
DataFrame API that can execute relational operations on both external
data sources and Spark’s built-in distributed collections.

DataFrames are collections of structured records that can be manipu-
lated using Spark’s procedural API, or using new relational APIs that
allow richer optimizations.

20M, Armbrust et al. Spark SQL: Relational Data Processing in Spark. In SIGMOD,
2015.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 80 / 206

HadoopDB21

HadoopDB is a hybrid system which is designed to attempt combining
the scalability advantages of Hadoop framework with the performance
and efficiency merits of parallel databases, Acquired by Teradata.

HadoopDB clusters multiple single node database systems (PostgreSQL)
using Hadoop as the task coordinator and network communication
layer.

Queries are expressed in SQL but their execution are parallelized across
nodes using the MapReduce framework and as much as possible is
pushed inside of the corresponding node databases.

HadoopDB achieves fault tolerance and the ability to operate in het-
erogeneous environments by inheriting the scheduling and job tracking
implementation from Hadoop. Parallelly, it tries to achieve the per-
formance of parallel databases by doing most of the query processing
inside the database engine.

21http://db.cs.yale.edu/hadoopdb/hadoopdb.html
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 81 / 206

http://db.cs.yale.edu/hadoopdb/hadoopdb.html

HadoopDB Architecture
MapReduce best meets the fault tolerance and ability to operate in
heterogeneous environment properties. It achieves fault tolerance
by detecting and reassigning Map tasks of failed nodes to other
nodes in the cluster (preferably nodes with replicas of the input Map
data). It achieves the ability to operate in a heterogeneous environ-
ment via redundant task execution. Tasks that are taking a long time
to complete on slow nodes get redundantly executed on other nodes
that have completed their assigned tasks. The time to complete the
task becomes equal to the time for the fastest node to complete the
redundantly executed task. By breaking tasks into small, granular
tasks, the effect of faults and “straggler” nodes can be minimized.

MapReduce has a flexible query interface; Map and Reduce func-
tions are just arbitrary computations written in a general-purpose
language. Therefore, it is possible for each task to do anything on
its input, just as long as its output follows the conventions defined
by the model. In general, most MapReduce-based systems (such as
Hadoop, which directly implements the systems-level details of the
MapReduce paper) do not accept declarative SQL. However, there
are some exceptions (such as Hive).

As shown in previous work, the biggest issue with MapReduce
is performance [23]. By not requiring the user to first model and
load data before processing, many of the performance enhancing
tools listed above that are used by database systems are not possible.
Traditional business data analytical processing, that have standard
reports and many repeated queries, is particularly, poorly suited for
the one-time query processing model of MapReduce.

Ideally, the fault tolerance and ability to operate in heterogeneous
environment properties of MapReduce could be combined with the
performance of parallel databases systems. In the following sec-
tions, we will describe our attempt to build such a hybrid system.

5. HADOOPDB
In this section, we describe the design of HadoopDB. The goal of

this design is to achieve all of the properties described in Section 3.
The basic idea behind HadoopDB is to connect multiple single-

node database systems using Hadoop as the task coordinator and
network communication layer. Queries are parallelized across
nodes using the MapReduce framework; however, as much of
the single node query work as possible is pushed inside of the
corresponding node databases. HadoopDB achieves fault tolerance
and the ability to operate in heterogeneous environments by
inheriting the scheduling and job tracking implementation from
Hadoop, yet it achieves the performance of parallel databases by
doing much of the query processing inside of the database engine.

5.1 Hadoop Implementation Background
At the heart of HadoopDB is the Hadoop framework. Hadoop

consits of two layers: (i) a data storage layer or the Hadoop Dis-
tributed File System (HDFS) and (ii) a data processing layer or the
MapReduce Framework.

HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size
and distributed across multiple DataNodes in the cluster. The
NameNode maintains metadata about the size and location of
blocks and their replicas.

The MapReduce Framework follows a simple master-slave ar-
chitecture. The master is a single JobTracker and the slaves or
worker nodes are TaskTrackers. The JobTracker handles the run-
time scheduling of MapReduce jobs and maintains information on
each TaskTracker’s load and available resources. Each job is bro-
ken down into Map tasks based on the number of data blocks that
require processing, and Reduce tasks. The JobTracker assigns tasks
to TaskTrackers based on locality and load balancing. It achieves

SMS Planner

SQL Query

MapReduce Job

Master node

Hadoop core

MapReduce
FrameworkHDFS

NameNode JobTracker

InputFormat Implementations

C
a

ta
lo

g

D
a

ta

L
o

a
d

e
r

Node 1

TaskTracker

DataNodeDatabase

Node 2

TaskTracker

DataNodeDatabase

Node n

TaskTracker

DataNodeDatabase

Database Connector

MapReduce
Job

Task with
InputFormat

Figure 1: The Architecture of HadoopDB

locality by matching a TaskTracker to Map tasks that process data
local to it. It load-balances by ensuring all available TaskTrackers
are assigned tasks. TaskTrackers regularly update the JobTracker
with their status through heartbeat messages.

The InputFormat library represents the interface between the
storage and processing layers. InputFormat implementations parse
text/binary files (or connect to arbitrary data sources) and transform
the data into key-value pairs that Map tasks can process. Hadoop
provides several InputFormat implementations including one that
allows a single JDBC-compliant database to be accessed by all
tasks in one job in a given cluster.

5.2 HadoopDB’s Components
HadoopDB extends the Hadoop framework (see Fig. 1) by pro-

viding the following four components:

5.2.1 Database Connector
The Database Connector is the interface between independent

database systems residing on nodes in the cluster and TaskTrack-
ers. It extends Hadoop’s InputFormat class and is part of the Input-
Format Implementations library. Each MapReduce job supplies the
Connector with an SQL query and connection parameters such as:
which JDBC driver to use, query fetch size and other query tuning
parameters. The Connector connects to the database, executes the
SQL query and returns results as key-value pairs. The Connector
could theoretically connect to any JDBC-compliant database that
resides in the cluster. However, different databases require different
read query optimizations. We implemented connectors for MySQL
and PostgreSQL. In the future we plan to integrate other databases
including open-source column-store databases such as MonetDB
and InfoBright. By extending Hadoop’s InputFormat, we integrate
seamlessly with Hadoop’s MapReduce Framework. To the frame-
work, the databases are data sources similar to data blocks in HDFS.

5.2.2 Catalog
The catalog maintains metainformation about the databases. This

includes the following: (i) connection parameters such as database
location, driver class and credentials, (ii) metadata such as data
sets contained in the cluster, replica locations, and data partition-
ing properties.

The current implementation of the HadoopDB catalog stores its
metainformation as an XML file in HDFS. This file is accessed by
the JobTracker and TaskTrackers to retrieve information necessary

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 82 / 206

Other SQL-On-Hadoop Systems

Apache Phoenix22

Apache Drill23

Actian Vortex24

HP Vertica

Pivotal HAWQ

22https://phoenix.apache.org/
23https://drill.apache.org/
24http://www.actian.com/products/analytics-platform/

vortex-sql-hadoop-analytics/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 83 / 206

https://phoenix.apache.org/
https://drill.apache.org/
http://www.actian.com/products/analytics-platform/vortex-sql-hadoop-analytics/
http://www.actian.com/products/analytics-platform/vortex-sql-hadoop-analytics/

Part V

Big Data 2.0 Processing Systems: Big Stream

Processing Systems

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 84 / 206

Big Streams

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 85 / 206

Big Streams

In 2010, Walmartreported that it was handling more than 1 million
customer transaction every hour.

The New York Stock Exchange (NYSE) reported trading more than
800 million shares on a typical day in October 2012.

By the end of 2011, there were about 30 billion Radio-Frequency Iden-
tification (RFID) tags.

In all of these applications and domains, there is a crucial requirement
to collect, process and analyse big streams of data in real time fashion.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 86 / 206

The Triad of Big Data Processing

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 87 / 206

Static Data Computation VS Streaming Data Computation

DataQueries Results

a) Static Data Computation

QueriesData Results

a) Streaming Data Computation

Today, in several applications data is continuously produced (e.g., user
activity logs, web logs, sensors, database transactions, ...).

The traditional approaches to analyze such data are:
Record data stream to stable storage (DBMS, HDFS,...)

Periodically analyze data with batch processing engine (DBMS, MapRe-
duce, ...)

Streaming processing engines analyze data while it arrives

The main goal of stream processing is to decrease the overall latency
to obtain results
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 88 / 206

Stream Processing Vs Batch Processing

 







  



  


 






  

  



  

 




S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 89 / 206

Hadoop for Big Streams?!

From the stream-processing point of view,
the main limitation of Hadoop is that it was
designed so that the entire output of each
map and reduce task is materialized into a
local file before it can be consumed by the
next stage.

This materialization step enables the im-
plementation of a simple and elegant
checkpoint/restart fault-tolerance mecha-
nism. But it causes significant delay for jobs
with real-time processing requirements.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 90 / 206

Types of Streaming Architectures






 









S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 91 / 206

Apache Storm25

Storm is a real-time distributed computing framework for reliably pro-
cessing unbounded data streams.

Storm is a project which is created by Nathan Marz and his team
at BackType, and released as open source in 2011 after BackType is
acquired by Twitter.

Part of Apache Incubator since September 2013.

Provides general primitives to do real time computations.

25https://storm.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 92 / 206

https://storm.apache.org/

Storm

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 93 / 206

Storm Concepts

Bolt processes any number of input streams and produces output
streams.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 94 / 206

Storm Concepts

Field Grouping provides various ways (e.g., shuffle, fields, global, di-
rect, all, custom) to control tuple routing to bolts.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 95 / 206

Storm Concepts

 







  

 




 


 
 

 


 


 

 


 




   

 




 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 96 / 206

Storm Concepts

Topology represents a network of Spouts and Bolts which run indef-
initely when is deployed.

Spouts

Bolts

Bolts

Concepts

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 97 / 206

Storm Example

Counting the number of occurrences of each hash tag in an input
stream of tweets

Topology Creation.

Spout Creation.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 98 / 206

Storm Example

HashtagsReader bolt

HashtagsCounter bolt

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 99 / 206

Hadoop VS Storm

Hadoop Storm
Batch Processing Real-Time Processing

Scalable Scalable

Fault-Tolerant Fault-Tolerant

Jobs Run to Completion Topologies Runs Forever

Job Tracker is SPOF No Single Point of Failure

Stateful Nodes Stateless Nodes

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 100 / 206

Storm Trident26

Provides a high level API abstraction (DSL) for Storm operations.

Process a group of tuples as a batch rather than processing tuple at a
time.

Trident has joins, aggregations, grouping, functions, and filters.

26https://storm.apache.org/documentation/Trident-tutorial.html
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 101 / 206

https://storm.apache.org/documentation/Trident-tutorial.html

Flink Streaming

 




 



 








 
 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 102 / 206

Spark Streaming

Sprak’s extension for stream processing.

Micro batches of RDD’s.

Receives data streams and chop them up into batches to get processed
and pushes out the result.












 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 103 / 206

Spark DStreams (Discretized Streams)

A DStream is a sequence of RDDs representing a data stream
Divide up data stream into batches of n seconds
Process each batch in Spark as an RDD
Return results of RDD operations in batches



























S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 104 / 206

The Lambada Patterns

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 105 / 206

Part VI

Big Data 2.0 Processing Systems: Big Graph

Processing Systems

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 106 / 206

Why Big Graph Processing?

People, devices, processes and other entities have been more
connected than at any other point in history!

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 107 / 206

Why Big Graph Processing?

Graphs Are Everywhere!

Protein Interactions Food Web

Social Network Web Graph

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 108 / 206

Graph Applications are Exploding

Google: > 1 trillion
indexed pages

Web Graph Social Network

Facebook: > 1 billion
active users

31 billion RDF
triples in 2011

Information Network Biological Network

De Bruijn:
4k nodes

(k = 20, … , 40)

Graphs in Machine Learning

100M Ratings,
480K Users,
17K Movies

31 billion RDF
triples in 2011

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 109 / 206

Big Data != Big GraphBig Graphs != Big Data

GraphChi – Aapo Kyrola

Data size: 140 billion
connections

≈ 1 TB

Not a problem!Not a problem!

Computation:

Hard to scale

Twitter network visualization,
by Akshay Java, 2009

78/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 110 / 206

Parallel Data Processing vs Parallel Graph Processing

Dependency
Graph

Dependency
Graph

TableTable

Structure of Computation

7

ResultResult

Data-Parallel Graph-Parallel

RowRow

RowRow

RowRow

RowRow

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 111 / 206

Parallel Data Processing vs Parallel Graph Processing

Data-Intensive VS

Complex Computation-Intensive

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 112 / 206

Examples of Graph Processing Algorithms

PageRank

Triangle Counting

Connected Components

Shortest Distance

Random Walk

Graph Coarsening

Graph Coloring

Minimum Spanning Forest

Community Detection

Collaborative Filtering

Belief Propagation

Named Entity Recognition

... And Many Others

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 113 / 206

Main Challenges of Graph Processing

Data is dynamic −− > No way of doing ”schema on write”

Structure driven computation −− > Poor Memory Locality and
Data Transfer Issues

Algorithms are explorative and iterative −− > I/O intensive

Combinatorial explosion of datasets −− > Relationships Grow
Exponentially and Limited Scalability

Irregular Structure −− > Challenging Graph Partitioning and
Limited Parallelism

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 114 / 206

PageRank

12

Page Rank Computation:
Offline Graph Analytics

Acknowledgement: I. Mele, Web Information Retrieval 11/ 185PageRank works by counting the number and quality of edges (links) to a node (web page) to
determine a rough estimate of how important the node is

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 115 / 206

MapReduce for PageRank

Each Page Rank Iteration:
 Input:
- (id1, [PRt(1), out11, out12, …]),
- (id2, [PRt(2), out21, out22, …]),
…

 Output:
- (id1, [PRt+1(1), out11, out12, …]),
- (id2, [PRt+1(2), out21, out22, …]),
…

Multiple MapReduce iterations

Iterate until convergence 
another MapReduce instance

V1

V2

V3

V4

V1, [0.25, V2, V3, V4]
V2, [0.25, V3, V4]
V3, [0.25, V1]
V4,[0.25, V1, V3]

V1, [0.37, V2, V3, V4]
V2, [0.08, V3, V4]
V3, [0.33, V1]
V4 ,[0.20, V1, V3]

Input:

Output:

One
MapReduce
Iteration

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 116 / 206

MapReduce for PageRank

Map
 Input: (V1, [0.25, V2, V3, V4]);
(V2, [0.25, V3, V4]); (V3, [0.25, V1]);
(V4,[0.25, V1, V3])

 Output: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3),
……, (V1, 0.25/2), (V3, 0.25/2);
(V1, [V2, V3, V4]), (V2, [V3, V4]), (V3, [V1]), (V4, [V1, V3])

V1

V2

V3

V4

24/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 117 / 206

MapReduce for PageRank

Map
 Input: (V1, [0.25, V2, V3, V4]);
(V2, [0.25, V3, V4]); (V3, [0.25, V1]);
(V4,[0.25, V1, V3])

 Output: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3),
……, (V1, 0.25/2), (V3, 0.25/2);
(V1, [V2, V3, V4]), (V2, [V3, V4]), (V3, [V1]), (V4, [V1, V3])

V1

V2

V3

V4

24/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 118 / 206

MapReduce for PageRank

Map
 Input: (V1, [0.25, V2, V3, V4]);
(V2, [0.25, V3, V4]); (V3, [0.25, V1]);
(V4,[0.25, V1, V3])

 Output: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3),
……, (V1, 0.25/2), (V3, 0.25/2);
(V1, [V2, V3, V4]), (V2, [V3, V4]), (V3, [V1]), (V4, [V1, V3])

Shuffle
Output: (V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4]); ……. ;
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

V1

V2

V3

V4

24/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 119 / 206

MapReduce for PageRank

Map
 Input: (V1, [0.25, V2, V3, V4]);
(V2, [0.25, V3, V4]); (V3, [0.25, V1]);
(V4,[0.25, V1, V3])

 Output: (V2, 0.25/3), (V3, 0.25/3), (V4, 0.25/3),
……, (V1, 0.25/2), (V3, 0.25/2);
(V1, [V2, V3, V4]), (V2, [V3, V4]), (V3, [V1]), (V4, [V1, V3])

Shuffle
Output: (V1, 0.25/1), (V1, 0.25/2), (V1, [V2, V3, V4]); ……. ;
(V4, 0.25/3), (V4, 0.25/2), (V4, [V1, V3])

Reduce
 Output: (V1, [0.37, V2, V3, V4]); (V2, [0.08, V3, V4]); (V3, [0.33, V1]);
(V4,[0.20, V1, V3])

V1

V2

V3

V4

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 120 / 206

MapReduce for Iterative Operations

MapReduce is not optimized for iterative operations

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 121 / 206

Hadoop for Big Graphs?!

MapReduce does not directly support itera-
tive algorithms.

Invariant graph-topology-data re-loaded and
re-processed at each iteration −− > wasting
I/O, network bandwidth, and CPU

Materializations of intermediate results at
every MapReduce iteration harm perfor-
mance

Extra MapReduce job on each iteration for
detecting if a fixpoint has been reached

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 122 / 206

An Overview of Big Graph Processing Systems

Graph Processing Platforms

Pregel Family

Pregel

Giraph

Giraph++

Mizan

GPS

Pregelix

Pregel+

GraphLab Family

GraphLab

PowerGraph

GraphChi
(Centralized)

Other Systems

GraphX

Trinity

TurboGraph
(Centralized)

Signal/Collect

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 123 / 206

Bulk Synchronous Parallel (BSP) Programming Model27

27L. G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 1990
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 124 / 206

Vertex View

• Think Like a Vertex

• Receive Messages

• Update States

• Send Messages

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 125 / 206

Vertex-centric Programming

MessageData1

VertexID

VertexData MessageData2

DataData

DataData DataData

DataData

DataDataDataDataDataData

DataData

DataData

DataData

Vertex-centric Programming
• “Think like a vertex”
• Popularized by the Pregel and GraphLab projects

– Historically, systolic computation and the Connection Machine

MyFunc(vertex)
{ // modify neighborhood }Data

Data Data

Data

Data

82/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 126 / 206

Google Pregel28

Expose specialized APIs to simplify
graph programming.

The first BSP-based implementation for graph processing

Communication through message passing (usually sent along the out-
going edges from each vertex) + Shared-Nothing
Vertex-centric computation, each vertex:

Receives messages sent in the previous superstep
Executes the same user-defined function
Modifies its value
If active, sends messages to other vertices (next superstep)
Votes to halt if it has no further work to do −− > becomes inactive

Terminate when all vertices are inactive and no messages in transmit
Advantages:

No locks −− > message-based communication
No semaphores −− > global synchronization
Iteration isolation −− > massively parallelizable

28G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski. Pregel: a system for large-scale graph processing. SIGMOD, 2010.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 127 / 206

Pregel

Active Inactive

Message Received

Votes to Halt

State Machine for a Vertex in PREGEL

Input

Output

Computation

Communication

Superstep
Synchronization

PREGEL Computation Model

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 128 / 206

Apache Giraph29

Google MapReduce Google Pregel

29https://giraph.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 129 / 206

https://giraph.apache.org/

Giraph’s Timeline


 





























S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 130 / 206

Giraph Execution Phases

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 131 / 206

Giraph Master-Slave System Architecture

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 132 / 206

BSP Example - Max Value

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 133 / 206

BSP Example - PageRank

13

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98

V1

V2

V3

V4




 
uBv v

k
k F

vPR
uPR

)(
)(1

PR(u): Page Rank of node u
Fu: Out-neighbors of node u

Bu: In-neighbors of node u

12/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 134 / 206

BSP Example - PageRank

14

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98

V1

V2

V3

V4




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0
PR(V1) 0.25
PR(V2) 0.25
PR(V3) 0.25
PR(V4) 0.25

13/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 135 / 206

BSP Example - PageRank

15

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98

V1

V2

V3

V4




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1
PR(V1) 0.25 ?
PR(V2) 0.25
PR(V3) 0.25
PR(V4) 0.25

14/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 136 / 206

BSP Example - PageRank

16

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98

V1

V2

V3

V4




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1
PR(V1) 0.25 ?
PR(V2) 0.25
PR(V3) 0.25
PR(V4) 0.25

0.25

0.12
0.12

15/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 137 / 206

BSP Example - PageRank
Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98

V1

V2

V3

V4




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1
PR(V1) 0.25 0.37
PR(V2) 0.25
PR(V3) 0.25
PR(V4) 0.25

0.25

0.12
0.12

16/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 138 / 206

BSP Example - PageRank

18

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1
PR(V1) 0.25 0.37
PR(V2) 0.25 0.08
PR(V3) 0.25 0.33
PR(V4) 0.25 0.20

V1

V2

V3

V4

17/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 139 / 206

BSP Example - PageRank

19

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1 K=2
PR(V1) 0.25 0.37 0.43
PR(V2) 0.25 0.08 0.12
PR(V3) 0.25 0.33 0.27
PR(V4) 0.25 0.20 0.16

V1

V2

V3

V4

Iterative Batch Processing

18/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 140 / 206

BSP Example - PageRank

20

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1 K=2 K=3
PR(V1) 0.25 0.37 0.43 0.35
PR(V2) 0.25 0.08 0.12 0.14
PR(V3) 0.25 0.33 0.27 0.29
PR(V4) 0.25 0.20 0.16 0.20

V1

V2

V3

V4

Iterative Batch Processing

18/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 141 / 206

BSP Example - PageRank

21

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

18/ 185

K=0 K=1 K=2 K=3 K=4
PR(V1) 0.25 0.37 0.43 0.35 0.39
PR(V2) 0.25 0.08 0.12 0.14 0.11
PR(V3) 0.25 0.33 0.27 0.29 0.29
PR(V4) 0.25 0.20 0.16 0.20 0.19

V1

V2

V3

V4

Iterative Batch Processing

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 142 / 206

BSP Example - PageRank

22

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1 K=2 K=3 K=4 K=5
PR(V1) 0.25 0.37 0.43 0.35 0.39 0.39
PR(V2) 0.25 0.08 0.12 0.14 0.11 0.13
PR(V3) 0.25 0.33 0.27 0.29 0.29 0.28
PR(V4) 0.25 0.20 0.16 0.20 0.19 0.19

V1

V2

V3

V4 Iterative Batch Processing

18/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 143 / 206

BSP Example - PageRank

23

Page Rank Computation:
Offline Graph Analytics

Sergey Brin, Lawrence Page, “The Anatomy of Large-Scale Hypertextual Web Search
Engine”, WWW ‘98




 
uBv v

k
k F

vPR
uPR

)(
)(1

K=0 K=1 K=2 K=3 K=4 K=5 K=6
PR(V1) 0.25 0.37 0.43 0.35 0.39 0.39 0.38
PR(V2) 0.25 0.08 0.12 0.14 0.11 0.13 0.13
PR(V3) 0.25 0.33 0.27 0.29 0.29 0.28 0.28
PR(V4) 0.25 0.20 0.16 0.20 0.19 0.19 0.19

V1

V2

V3

V4
FixPoint

19/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 144 / 206

BSP Communication - Pregel Execution

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 145 / 206

MapReduce VS Pregel

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 146 / 206

MapReduce VS PregelBenefits of PREGEL over MapReduce
(Offline Graph Analytics)

MapReduce PREGEL
Requires passing of entire
graph topology from one
iteration to the next

Each node sends its state only
to its neighbors. Graph
topology information is not
passed across iterations

Intermediate results after
every iteration is stored at
disk and then read again
from the disk

Main memory based

Programmer needs to write
a driver program to support
iterations; another
MapReduce program to
check for fixpoint

Usage of supersteps and
master-client architecture
makes programming easy

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 147 / 206

Limitations of PregelDisadvantages of PREGEL
In Bulk Synchronous Parallel (BSP) model, performance is
limited by the slowest machine

 Real-world graphs have power-law degree distribution,
which may lead to a few highly-loaded servers

 Several machine learning algorithms (e.g., belief
propagation, expectation maximization, stochastic
optimization) have higher accuracy and efficiency with
asynchronous updates

Does not utilize the already computed partial results from the
same iteration

Partition the graph – (1) balance server workloads
(2) minimize communication across servers

Potential Optimizations

47/ 185S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 148 / 206

Mizan30

An open-source project developed in C++ by KAUST, in collaboration
with IBM Research.

Focuses on efficient load balancing across workers in a cluster and
minimizing the variations across workers by identifying which vertices
to migrate and where to migrate them to.

Mizan (Arabic): a double-pan scale

A System for Dynamic Load Balancing

 Pregel
 HADI
 Pegasus
 X-RIME

Mizan (arabic) : a double-pan scale

We’ll focus on Pregel, since Mizan is a
refined Pregel system.

30Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
a system for dynamic load balancing in large-scale graph processing. EuroSys, 2013.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 149 / 206

Mizan
Mizan Technique

Monitoring:
 Outgoing Messages
 Incoming Messages
 Response Time

Migration Planning:
 Identify the source of imbalance
 Select the migration objective
 Pair over-utilized workers with under-utilized ones
 Select vertices to migrate
 Migrate vertices

Z. Khayyat et. al., Eurosys ’13 169/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 150 / 206

Mizan: Dynamic Re-Partition
Mizan: Dynamic Re-Partition

Z. Khayyat et. al., Eurosys ‘13

Dynamic Load Balancing across supersteps in PREGEL

Worker 1Worker 1Worker 2Worker 2
Worker nWorker n

Worker 1Worker 1Worker 2Worker 2
Worker nWorker n ……

Computation
Communication

Adaptive re-partitioning
Agnostic to the graph structure
Requires no apriori knowledge of algorithm behavior

167/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 151 / 206

Mizan KAUST

8

Mizan - Overview

 Min-cut partitioning of input graph
 Point-to-point message passing
 Good for power-law graphs

 Random partitioning of input
 Ring overlay message passing
 Good for non-power-law graphs

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 152 / 206

Challenges of MizanMizan Technique

Monitoring:
 Outgoing Messages
 Incoming Messages
 Response Time

Migration Planning:
 Identify the source of imbalance
 Select the migration objective
 Pair over-utilized workers with under-utilized ones
 Select vertices to migrate
 Migrate vertices

Z. Khayyat et. al., Eurosys ’13

- Does workload in the current iteration an
indication of workload in the next iteration?

- Overhead due to migration?

170/ 185S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 153 / 206

GraphLab32

GraphLab is an open-source large scale graph processing project, im-
plemented in C++, which started at CMU and is currently supported
by Dato Inc31.
Unlike Pregel, GraphLab relies on the shared memory abstraction and
the GAS (Gather, Apply, Scatter) processing model which is sim-
ilar to but also fundamentally different from the BSP model that is
employed by Pregel.
The GraphLab abstraction consists of three main parts: the data graph,
the update function, and the sync operation.

31https://dato.com/
32Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

Distributed GraphLab: A Framework for Machine Learning in the Cloud. PVLDB, 2012.
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 154 / 206

https://dato.com/

GAS Model



S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 155 / 206

The GraphLab FrameworkThe GraphLab Framework

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation

57/ 185S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 156 / 206

GraphLab: Ghost Vertices

Ghost vertices maintain adjacency structure and replicate remote data

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 157 / 206

GraphLab Update Function

label_prop(i, scope){
// Get Neighborhood data

(Likes[i], Wij, Likes[j]) scope;

// Update the vertex data

// Reschedule Neighbors if needed
if Likes[i] changes then
reschedule_neighbors_of(i);
}

Likes[i]¬ Wij ´ Likes[j]
j Î Friends[i]

å ;

Update Functions

An update function is a user defined program which when
applied to a vertex transforms the data in the scopeof the vertex

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

59/ 185

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 158 / 206

PREGEL VS GraphLabPREGEL vs. GraphLab

Synchronous System

PREGEL GraphLab
Asynchronous System

No concurrency control,
no worry of consistency

Consistency of updates
harder (edge, vertex,
sequential)

Easy fault-tolerance, check
point at each barrier

Fault-tolerance harder
(need a snapshot with
consistency)

Bad when waiting for
stragglers or load-
imbalance

Asynchronous model can
make faster progress

Can load balance in
scheduling to deal with
load skew

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 159 / 206

Difficulties with Power Law Graphs

Difficulties with Power-Law Graphs

Asynchronous Execution
requires heavy locking (GraphLab) Touches a large fraction of

graph (GraphLab)

Sends many messages (Pregel)

Edge meta-data
too large for single machine

Synchronous Execution
prone to stragglers (Pregel)

160/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 160 / 206

PowerGraph33

A member of the GraphLab family of systems that have been introduced
to avoid the imbalanced workload caused by high degree vertices in
power-law graphs.

PowerGraph introduced a partitioning scheme that cuts the vertex set
in a way such that the edges of a high-degree vertex are handled by
multiple workers.

As a tradeoff, vertices are replicated across workers, and communication
among workers are required to guarantee that the vertex value on each
replica remains consistent.

33J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. In OSDI, 2012.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 161 / 206

PowerGraph: MotivationPowerGraph: Motivation

100 102 104 106 108
100

102

104

106

108

1010

degree

co
un
t

Top 1% of vertices are
adjacent to

50% of the edges!
High-Degree

Vertices

Nu
m

be
r o

f V
er

tic
es

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

More than 108 vertices
have one neighbor.

Acknowledgement: J. Gonzalez, UC Berkeley 159/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 162 / 206

The PowerGraph Framework

Split High-Degree vertices

 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 163 / 206

Vertex-Cut instead of Edge-CutVertex-Cut instead of Edge-Cut

Power-Law graphs have good vertex cuts. [Albert et al., Nature ‘00]
Communication is linear in the number of machines
each vertex spans
A vertex-cut minimizes machines each vertex spans
Edges are evenly distributed over machines improved work
balance

Machine 1Machine 1 Machine 2Machine 2

Y Y

Vertex Cut (GraphLab)

162/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 164 / 206

Edge-Cut

Used by Pregel and GraphLab abstractions

Evenly assign vertices to machines

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 165 / 206

Vertex-Cut

Used by PowerGraph abstraction

Evenly assign edges to machines

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 166 / 206

The PowerGraph FrameworkPowerGraph Framework
Machine 2Machine 2Machine 1Machine 1

Machine 4Machine 4Machine 3Machine 3

Σ1Σ1 Σ2Σ2

Σ3Σ3 Σ4Σ4

+ + +

YYYY

Y’

ΣΣ
Y’Y’Y’Gather

Apply

Scatter

Master

Mirror

Mirror
Mirror

J. Gonzalez et. al., “PowerGraph”, OSDI ‘12 163/ 185
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 167 / 206

Minimizing Communication in PowerGraph























S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 168 / 206

GraphX34

A distributed graph engine built on top of Spark.

GraphX extends Sparks Resilient Distributed Dataset (RDD) abstrac-
tion to introduce the Resilient Distributed Graph (RDG), which
associates records with vertices and edges in a graph and provides a
collection of expressive computational primitives.

The GraphX RDG leverages advances in distributed graph representa-
tion and exploits the graph structure to minimize communication and
storage overhead.

GraphX relies on a flexible vertex cut partitioning to encode graphs as
horizontally partitioned collections.

34J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph Processing in a Distributed Dataflow Framework. OSDI, 2014.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 169 / 206

GraphX

One system for the entire graph pipeline. Unlike other graph processing
systems, the GraphX API enables the composition of graphs.

GraphX Unifies
Data-Parallel and Graph-

Parallel
Systems

Spark
Table API

RDDs, Fault-
tolerance, and task

scheduling

GraphLab
Graph API

graph representation
and execution

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Graph Construction Computation Post-Processing

one system for the entire graph pipeline

Tables and graphs are views of the same physical data.

Each view has its own operators that exploit the semantics of the view
to achieve efficient execution.views same physical

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 170 / 206

GraphX Representation





















S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 171 / 206

GraphX Representation

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 172 / 206

Distributed Graphs as Tables (RDDs)

Part. 2Part. 2

Part. 1Part. 1

Vertex
Table
(RDD)

BB CC

AA DD

FF EE

AA DD

Distributed Graphs as Tables (RDDs)

DD

BB CC

DD

EE

AAAA

FF

Edge
Table
(RDD)AA BB

AA CC

CC DD

BB CC

AA EE

AA FF

EE FF

EE DD

BB

CC

DD

EE

AA

FF

Routing
Table
(RDD)

BB

CC

DD

EE

AA

FF

1

2

1 2

1 2

1

2

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 173 / 206

GraphX Graph Operations

Basic information (numEdges, numVertices, inDegrees, ...)

Views (vertices, edges, triplets)

Caching (persist, cache, ...)

Transformation (mapVertices, mapEdges, ...)

Structure modification (reverse, subgraph, ...)

Neighbour aggregation (collectNeighbours, aggregations, ...)

Graph builders (various I/O operations)

...

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 174 / 206

GraphX Graph Operations

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 175 / 206

GraphX Triplet View



 



















  

  

  

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 176 / 206

GraphX Subgraph Transformation 



 












 









S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 177 / 206

GraphX Subgraph Transformation 



 




















S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 178 / 206

GraphX Enables Joining Tables and GraphsEnable Joining Tables and
Graphs

User
Data

Product
Ratings

Friend
Graph

ET
L

ET
L

Product Rec.
Graph

JoinJoin Inf.Inf.

Prod.
Rec.

Tables Graphs

20

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 179 / 206

GraphX System Optimization










 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 180 / 206

Gradoop35

High Level Architecture

Apache Flink and Neo4j Meetup Berlin 27

HDFS/YARN
Cluster

Apache HBase Distributed Graph Store

Apache Flink Operator Implementation

Apache Flink Distributed Operator Execution

Extended Property GraphModel (EPGM)

Graph Analytical Language (GrALa) Java 7
25K (33K) LOC
GPLv3

35http://dbs.uni-leipzig.de/en/research/projects/gradoop
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 181 / 206

http://dbs.uni-leipzig.de/en/research/projects/gradoop

Gradoop: Apache Flink Third-party libraryApache Flink Third-party library

Apache Flink and Neo4j Meetup Berlin 28

Streaming Dataflow Runtime

DataSet DataStream

Cluster (e.g. YARN)Local Cloud (e.g. EC2)

Batch Stream

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 182 / 206

Gradoop OperatorsCurrent State
Operators

Unary Binary
Algorithms

Aggregation

Pattern Matching
Projection

Summarization Equality
Call *

Combination

Overlap
Exclusion

Equality

Union

Intersection
Difference

Gelly Library

BTG Extraction
Label Propagation
Graph Forecasting

Frequent Subgraphs

Top

Selection

Distinct
Sort

Apply *
Reduce *

Call *
* auxiliary

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 183 / 206

Part VII

Big Machine Learning Libraries

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 184 / 206

Mahout36

Mahout is a Java library that implements Machine Learning techniques
(e.g. classification, clustering, recommendation) on top of the Hadoop
framework.

Example use cases:

Recommendation: Takes users’ behavior and tries to find items users
might like.

Clustering: takes e.g. text documents and groups them into groups of
topically related documents.

36http://mahout.apache.org/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 185 / 206

http://mahout.apache.org/

SystemML37

SystemML provides declarative large-scale machine learning (ML) that aims at flexi-
ble specification of ML algorithms and automatic generation of hybrid runtime plans
ranging from single node, in-memory computations, to distributed computations
such as Apache Hadoop MapReduce and Apache Spark.

© 2015 IBM Corporation

High-Level SystemML Architecture

10
IBM

Hadoop or Spark Cluster
(scale-out)

In-Memory Single Node
(scale-up)

Runtime

Compiler

Language

DML Scripts DML (Declarative Machine
Learning Language)

37http://incubator.apache.org/projects/systemml.html
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 186 / 206

http://incubator.apache.org/projects/systemml.html

Google Cloud Machine Learning38

Google Cloud Machine Learning is a managed platform that enables its
users to easily build machine learning models, that work on any type
of data, of any size.

38https://cloud.google.com/ml/
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 187 / 206

https://cloud.google.com/ml/

Other Big Machine Learning Tools

Microsoft Azure Machine Learning39

BigML40

Hunk41

RHadoop42

39https://azure.microsoft.com/en-us/services/machine-learning/
40https://bigml.com/
41http://www.splunk.com/en_us/products/hunk.html
42https://github.com/RevolutionAnalytics/RHadoop/wiki

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 188 / 206

https://azure.microsoft.com/en-us/services/machine-learning/
https://bigml.com/
http://www.splunk.com/en_us/products/hunk.html
https://github.com/RevolutionAnalytics/RHadoop/wiki

Part VIII

Open Challenges

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 189 / 206

Open Challenge: Pipelining Various Big Data Jobs

In practice, one of the possible scenarios is that users need to execute
a computation that combines various analytics jobs.

Existing systems do not address the challenges of data construction,
transformation and post processing which are often just as problematic
as the subsequent computation (computation pipelines)

New trend of integrated systems: Spark and Flink.

Emerging pipelining systems: Apache Tez43 and Apache MRQL44.

43https://tez.apache.org/
44https://mrql.incubator.apache.org/

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 190 / 206

https://tez.apache.org/
https://mrql.incubator.apache.org/

Open Challenge: Pipelining Various Big Data Jobs

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 191 / 206

Open Challenge: Data Analytics across Multiple Clusters

As data are increasingly distributed across different departments, clusters and
organizations which may hold different features for the same entities due to
the different products they have, there are increasing requirements to apply
data analytics across clusters in order to learn comprehensive pattern and
knowledge from end users.
Current big data processing frameworks not natively designed for processing
datasets distributed on infrastructures with heterogeneous connectivity.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 192 / 206

Open Challenge: Lack of Declarative Interfaces

In the early days of the Hadoop framework, the lack of declarative
languages to express the big data processing tasks has limited its prac-
ticality and the wide acceptance and the usage of the framework.

Several systems (e.g., Pig, Hive, Impala) have been designed to provide
high-level languages for expressing big data tasks on top of Hadoop.

Currently, the systems/stacks of large scale graph and stream process-
ing platforms are suffering from the same challenge.

High level language abstractions for expressing big data process-
ing jobs and enable the underlying systems/stack to perform
automatic optimization are crucially required.

“Describing” Declarative Procedural “Doing”

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 193 / 206

Open Challenge: Benchmarking Challenges45

Designing a good benchmark is a challenging task due to the many
aspects that should be considered which can influence the adoption
and the usage scenarios of the benchmark.

Variety on algorithms, systems, big dataets characteristics and appli-
cation domains.

There is not enough standard benchmarks that can be effectively em-
ployed in this domain.

45O. Batarfi, R. Elshawi, A. Fayoumi, R. Nouri, S. Beheshti, A. Barnawi, S. Sakr ,
Large Scale Graph Processing Systems: Survey and An Experimental Evaluation. Cluster
Computing journal, 2015

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 194 / 206

Platform-Independent Analytics

In general, more alternatives usually mean harder decisions for choice.

Porting the data and the data analytics jobs between different systems is a tedious,
time consuming and costly task.

Musketeer46 and Rheem47 systems proposed a new direction to map the front-end
of the big data jobs (e.g., Hive, SparkSQL) to a broad range of back-end execution
engines (e.g., Hadoop, Spark, PowerGraph).

More work is still required to tackle the challenge of providing a platform indepen-
dence and multi-platform task execution platforms.

46I. Gog et al. Musketeer: all for one, one for all in data processing systems. EuroSys, 2015.
47D. Agrawal et al. Rheem: Enabling Multi-Platform Task Execution. SIGMOD, 2016.

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 195 / 206

Part IX

Conclusions

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 196 / 206

Conclusions

Big Data is the New Oil
and

Big Data Processing Systems is the Machinery

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 197 / 206

Conclusions

Big Data has a growing market size48

48Wikibon Taming Big Data
S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 198 / 206

Conclusions

Scalable Big Data processing involves various unique challenges

In the last few years, several distributed data processing systems have
been introduced with various design decisions

Open challenges include declarative interfaces, pipelining and integrat-
ing various big data systems, and benchmarking

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 199 / 206

Conclusions

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 200 / 206

Conclusions
 

 

 

 

 


 

 

 

 

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 201 / 206

Our Big Data 1.0 Book

Sherif Sakr and Mohamed Gaber. ”Large Scale and Big Data: Processing
and Management”, CRC Press, 2014

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 202 / 206

Our Big Data 2.0 Book

Sherif Sakr. ”Big Data 2.0 Processing Systems”, Springer, 2016

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 203 / 206

Our Giraph Book

Sherif Sakr et al. ”Large Scale Graph Processing Using Apache Giraph”,
Springer, 2016

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 204 / 206

Our Handbook on Big Data

Albert Zomaya and Sherif Sakr. ”Handbook of Big Data Technologies”,
Springer, 2017

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 205 / 206

The End

S. Sakr (RTSI’16) Big Data 2.0 Processing Systems 206 / 206

	Big Data Phenomena
	Big Data 1.0 System: The Hadoop Decade
	Big Data 2.0 Processing Systems: General-Purpose Processing Engines
	Big Data 2.0 Processing Systems: SQL-On-Hadoop
	Big Data 2.0 Processing Systems: Big Stream Processing Systems
	Big Data 2.0 Processing Systems: Big Graph Processing Systems
	Big Machine Learning Libraries
	Open Challenges
	Conclusions

